Добавить в цитаты Настройки чтения

Страница 6 из 77



Так де Бройль связал между собой модель атома, придуманную Бором, с особыми волнами, управляющими поведением электронов в атоме. Расчет, произведенный де Бройлем, привел его к боровским орбитам. Квантовые числа Бора обрели физический смысл.

Внутреннее строение атома все более прояснялось. Оно четко проявлялось и в расположении цветных линии оптического спектра, и в значениях квантовых чисел.

Для того чтобы избежать недоразумений, следует напомнить, что в дальнейшем квантовая физика была вынуждена отказаться от представления движения электронов при помощи определенных орбит. В соответствии с этим изменился и смысл, вкладываемый в квантовые числа, введенные Бором и Зоммерфельдом. Но эти квантовые числа остались необходимыми и в новой квантовой теории, пришедшей на смену квантовой механике Бора — Зоммерфельда.

Метод квантования, который Зоммерфельд назвал колдовством, прочно вошел в обиход физики. Но приемы колдовского ритуала постепенно совершенствовались. Этим колдовством в совершенстве овладел Эдмунд Клифтон Стонер, талантливый физик-теоретик, окончивший Кембриджский университет. Он стал в 1937 году членом Лондонского королевского общества. Круг его научных интересов — проблемы магнетизма, атомной структуры веществ, квантовая статистика. В 1925 году он ввел в науку подразделение электронных оболочек атома на подоболочки. Путь к этому начался так.

Стонер сопоставлял спектральные линии в оптических спектрах атомов со всем набором возможных сочетаний трех квантовых чисел, введенных Бором и Зоммерфельдом перед ним распахнулись двери, ведущие в «кухню» природы, где по вполне определенным рецептам «приготовлялись» те или иные атомы.

Стонер сумел проследить, как из спектров атомов с необходимостью вытекает порядок распределения электронов орбитам, начиная от простейшего атома водорода, имеющего один электрон, к сложным многоэлектронным атомам. В 1924 году в статье «Распределение электронов по атомным уровням» он показал соответствие между рентгеновскими спектрами элементов и квантовыми числами Бора и Зоммерфельда.

Стонер пишет: «Электроны могут входить в группу (группами он называл электронные оболочки) до тех пор, пока не будут заняты все возможные (для этой оболочки) орбиты, и тогда атом будет обладать симметричной структурой.

Работа Стонера послужила в определенном смысле завершением работы Менделеева по выявлению связи физических и химических свойств атомов с их взаимным расположением в периодической системе элементов. Запомним: химические свойства элементов определяются количеством электронов во внешней оболочке атома. Внутренние оболочки иногда влияют на химические свойства, но гораздо слабее, чем электроны внешней оболочки.

Теперь в каждой из клеток периодической системы элементов можно было просто нарисовать схему расположения электронных орбит, которые группируются в оболочки, соответствующие периодам таблицы Менделеева. Вопрос о том, как устроены атомы и как их устройство связано с их свойствами, казался выясненным окончательно.

За кулисами периодического закона

Истинным ученым ни один шаг не кажется последним. Прозрачная ясность схемы Стонера неизбежно породила вопрос: почему заполнение электронных оболочек происходит именно так, а не иначе? Что стоит за периодическим законом, на чем основан этот закон?

Уже в марте 1925 года немецкий физик-теоретик Вольфганг Паули ответил на этот вопрос. Ответил введением постулата, ставшего затем одним из фундаментов квантовой физики. Этот постулат известен теперь как «принцип запрета» Паули.



Незадолго до того, анализируя с квантовой точки зрения влияние внешнего магнитного поля на спектр атомов, Паули пришел к любопытному выводу. Он решил, что все известные результаты такого воздействия (открытые голландцем Питером Зееманом, получившим в 1902 году Нобелевскую премию), включая воздействие сильных магнитных полей, можно объяснить. Для этого надо допустить ситуацию, которую нельзя описать классически. Как видно, электрон обладает неизвестной до того своеобразной двузначностью квантовых свойств.

В статье «О связи заполнения электронных групп в атоме со сложной структурой спектров» Паули опирается на результаты Стонера и на обнаруженную им самим двузначность квантовых свойств электрона. Для того чтобы упростить рассуждения, Паули отмечает, что при использовании трех квантовых чисел приходится признать, что в атоме, неподвергаемом внешним воздействиям, могут существовать группы орбит электронов, для которых энергии электронов одинаковы. Такие «групповые» состояния он называл вырожденными. Воздействие магнитного поля, в соответствии с наблюдениями Зеемана, выявляет отдельные орбиты, образующие группу. Для того чтобы разобраться в этом, достаточно ввести помимо трех квантовых чисел Зоммерфельда еще одно квантовое число. Если классификация группы производится при помощи четырех квантовых чисел, можно без труда объяснить, как вырожденные группы расщепляются на отдельные орбиты, различающиеся между собой величиной энергии. Причем каждая из таких орбит может быть занята только одним-единственным электроном.

Принцип запрета можно сформулировать так: если в атоме находится электрон, для которого все четыре квантовых числа имеют определенные значения, то это состояние «занято». «Занято» означает, что ни один из других электронов, входящих в состав этого атома, не может иметь такой же набор квантовых чисел.

Паули рассматривает следствия из этого принципа. Принцип запрета не только непосредственно объясняет Зееманом расщепление спектров атомов под действием магнитного поля, но и приводит к результатам Стонера. Более того, так как физические и химические свойства атома определяются его электронными оболочками, то принцип запрета позволил бы построить периодическую систему Менделеева, не опираясь на физико-химические свойства элементов. Не опираясь на то, что послужило Менделееву основой для построения его таблицы.

Система Менделеева, если бы она не была построена самим Менделеевым, возникла бы как необходимое следствие квантовых законов, включая «принцип запрета» Паули. Думая об этом, нельзя не удивляться интуиции Менделеева, позволившей ему сформулировать периодический закон задолго до возникновения квантовой механики.

Постулативный характер «принципа запрета» Паули побуждал ученых к отысканию той физической реальности, которую выявляет этот постулат. В справедливость его поверили все. Без него невозможно объяснить ни тонки детали атомных спектров, ни физическое содержание периодического закона.

Но что же стоит за этим принципом? В то время (в 1925 году) физики считали окончательно понятым только то, что можно свести к прототипам, изученный в рамках механики Ньютона или электродинамики Максвелла или, наконец, в рамках примирившей их Общей теории относительности. Как же понять физический смысл «принципа запрета» Паули?

Здесь нужно познакомиться с теоретиком, который отличался разносторонними интересами. Ему принадлежит, кроме физических, ряд исследований по египтологии Он принимал участие в американской секретной миссии «Алсос», занимавшейся в конце второй мировой войны сбором информации о состоянии атомных исследований в Германии, вывозом документации и оборудования из германских институтов, связанных с атомной проблеме и интернированием немецких физиков-атомщиков. Речь об американце Сэмюэле Абрахаме Гаудсмите.

В 1925 году Гаудсмит вместе с Дж. Уленбеком выдвинул гипотезу о вращающемся электроне. Эта гипотеза не осталась незамеченной, она вызвала волнение среди физиков. Авторы ее утверждали, что электрон похож на вращающийся, заряженный отрицательным электричеством шарик. Вращается он вокруг одного из своих диаметров. И электрон, как и подобает вращающемуся материальному телу, несущему на себе электрический заряд, обладает собственным механическим и магнитным моментом.

Для обозначения собственного вращения электрона и его механического момента ученые воспользовались четвертым квантовым числом, использовав для его обозначения английское слово «спин», которое в переводе означает «волчок». По существу, это было квантовое число, ранее введенное Паули.