Добавить в цитаты Настройки чтения

Страница 30 из 77



Но и этим не исчерпались замечательные свойства счетчиков Черенкова.

Сама природа образования ударной световой волны приводит к тому, что они обладают еще одной очень важной особенностью. Они хорошо «видели» одни частицы, но не хотели замечать другие. Они были избирательны в своем отношении к космическим пришельцам. Счетчики обладали, как сказал бы ученый, пороговым эффектом.

Казалось, это огромный недостаток.

Казалось, они могут пропустить, не заметить важную частицу. Но этот-то недостаток и обернулся достоинством.

Дело в том, что счетчик Черенкова не хочет замечать лишь медленные частицы. Те частицы, скорость которых меньше скорости света в веществе, из которого сделан сам счетчик, не создают в нем черенковского излучения, а значит, счетчик не считает.

И чудесно! Ученые поняли: изготавливая счетчики из различных веществ, можно изменять величину пороговой скорости.

Так можно измерять скорость космических частиц, энергия которых столь велика, что ее невозможно измерить другими приборами.

Эти замечательные способности счетчиков Черенкова и дали им право полететь уже на первых советских искусственных спутниках и ракетах. И они не только помогли обнаружить корону Земли — три пояса заряженных частиц, ореолом опоясывающих Землю, — но и дали возможность раскрыть секрет состава космических лучей.

Над этим вопросом давно и безуспешно бились ученые. Как определить химический состав космических частиц? Как узнать, частицы каких элементов залетают к нам из космоса?

И тут проявилось еще одно уникальное свойство черенковских счетчиков. Они оказались способными не только определить скорость, энергию и направление прилета частицы, но и измерить ее заряд. Выяснилось, что чем больше заряд частицы, залетевшей в счетчик Черенкова, тем более яркий хвост сопровождает ее, тем большая часть ее энергии переходит в свет на каждом сантиметре ее пути. Тем более яркое излучение Вавилова — Черенкова она вызывает. Таким образом, яркость и сила свечения, острота светового конуса точно и однозначно указывают, какая частица залетела в счетчик, ядром какого элемента она является. Так ученые узнали, что в составе космических лучей есть ядра водорода и гелия, железа и многих других элементов, имеющихся на Земле.

Благодаря счетчикам Черенкова люди узнали, что и Земля, и далекие миры, которые прислали нам своих космических посланников, состоят из одних и тех же элементов, что химический состав в огромных областях Вселенной одинаков.

Для исследования космического пространства приходится изготавливать счетчики Черенкова, имеющие очень малые размеры.

Но в институте, где работает Павел Алексеевич, стоит такой огромный бак с водой, что заглянуть в него можно, лишь забравшись по лестнице на второй этаж. В этом баке — самом большом в мире счетчике Черепкова — налито сто тонн воды! Просто не верится, что необходимо такое огромное сооружение для определения свойств частички, залетевшей в бак с неба!

Но конечно, сделано это не напрасно.

Конструкторам пришлось сделать бак таким большим для того, чтобы космическая частица, пролетая через него, успела превратить в нем в свет всю свою энергию. И тогда, измеряя интенсивность свечения фотоумножителем, можно определить полную энергию влетевшей в бак частицы.

Новые применения

Но и это не рекорд. Известны эксперименты, в которых чувствительные фотоприемники попросту размещали в глубине океана — и они фиксировали излучение Вавилова — Черепкова, образуемое космическими частицами, пронизывающими толщу воды.



Возможность детектирования нейтрино по черенковскому излучению в воде на больших глубинах океана была рассмотрена в 1969 году членом-корреспондентом АН СССР Е. А. Чудаковым. Он указал, что толща воды надежно экранирует фотоприемники черенковского излучения от воздействия всех частиц, кроме нейтрино и мюонов.

Конкретный проект такого эксперимента был выдвинут в 1975 году большим коллективом американских ученых. Проект получил наименование ДЮМАНД — по первым буквам английских фраз, определяющих его существо: глубоководное детектирование мюонов и нейтрино. В разработке этого проекта активно участвовали советские ученые. Масштабы установки поражают воображение. Объем воды, участвующей в эксперименте, образует куб, каждая грань которого равна одному километру. Объем установки равен миллиарду кубометров.

Вся установка располагается на 5-километровой глубине. На этой глубине вблизи Гавайских островов вода столь чиста, что фотоумножитель способен надежно зафиксировать вспышку черенковского излучения на расстоянии двадцати метров. Это определяет требуемое количество фотоумножителей — свыше тысячи.

Их сигналы будут обрабатываться ЭВМ, располагаемой на берегу.

Вокруг открытия Черепкова и после его признания бушевало много споров. Особенно относительно его практического применения. В дискуссиях рождались интересные идеи. Одну из них высказал еще при обсуждении докторской диссертации Черепкова академик Мандельштам. Он предположил, что для наблюдения эффекта Черепкова вовсе не обязательно пропускать электроны через вещество, где они довольно быстро тормозятся встречными атомами. По его мнению, достаточно пропустить пучок быстрых электронов не через вещество, а вблизи его поверхности. Можно даже попытаться «вспрыснуть» их в канал, проделанный в твердом теле.

Электроны, пролетая близко к его поверхности, будут возбуждать в атомах вещества электромагнитные волны. Если электроны летят быстрее, чем возбуждаемые им в веществе волны, значит, в веществе возникает ударная черенковская волна излучения.

Электроны летят в пустоте и поэтому, конечно, не могут лететь быстрее света. Но достаточно, чтобы они летели быстрее, чем электромагнитная волна, бегущая внутри диэлектрика. В этом случае волны, возникающие в диэлектрике под воздействием пролетающего электрона, обязательно будут складываться в черенковскую волну, которая распространится внутри диэлектрика, а затем…

А затем рожденные таким образом электромагнитные волны могут быть излучены в пространство.

Мысль Мандельштама была не просто красивой иллюстрацией механизма возникновения черенковского излучения. Она указывала на большие практические возможности.

В 1947 году физик-теоретик В. Л. Гинзбург развил мысль Мандельштама.

Он тщательно изучил черенковское излучение в твердых телах и пришел к выводу, что таким образом можно просто осуществить генерацию очень коротких, миллиметровых и даже субмиллиметровых волн. То есть создать новые генераторы радиоволн. Для радиотехники, которая все время борется за все более и более короткие волны, такие генераторы были бы просто находкой.

Таким способом можно получить особенно мощные радиоволны, используя не сплошной поток электронов, а электроны, предварительно сгруппированные в небольшие сгустки.

Оказалось, это не единственный способ получения радиоволн с помощью эффекта Черенкова. Ведь мы знаем, что для возникновения эффекта достаточно уменьшить скорость электромагнитной волны до величины меньшей, чем скорость электрона, и черепковское излучение начнется.

Однако скорость электромагнитных волн можно уменьшить, не только пропуская их через диэлектрик. Во многих случаях сантиметровые и миллиметровые волны передаются с помощью специальных металлических труб — волноводов. Если внутри трубы установить ряд перегородок с отверстиями, то скорость распространения волны по такой трубе сильно уменьшится.

Значит, выбрав подходящие размеры трубы и перегородок, откачав из трубы воздух и пропустив через нее пучок быстрых электронов, сгруппированных в сгустки, 0 получить мощное черепковское излучение миллиметровых волн. Оно будет образовываться здесь в результате взаимодействия электронов с отдельными отсеками волновода и сложения образующихся при этом электромагнитных волн.

Так эффект, открытый советским ученым и казавшийся ранее лишь интересным физическим явлением, уже входит в технику.