Страница 20 из 77
Как не вспомнить здесь о Колумбе! Он стремился найти морской путь в Индию и, увидев землю, не сомневался в том, что достиг цели. Были ли у него основания усомниться в своей уверенности при виде краснокожих жителей и незнакомой природы Нового Света?
Не так ли Раман и Кришнан, стремясь к обнаружению эффекта Комптона в видимом свете, решили, что нашли его, обнаружив свет, прошедший сквозь их светофильтры? Усомнились ли они, когда измерения показали неожиданно большое изменение длины волны? Какой вывод они сделали из обнаруженного ими совпадения величины изменения частоты при рассеянии с частотой инфракрасных спектров?
Ответ на эти вопросы содержится в следующем письме Рамана и Кришнана, датированном 15 мая и опубликованном 7 июля 1928 года в том же журнале «Природа». Да, они поняли: это не эффект Комптона. Они открыли новое явление! Новое явление, по существу предсказанное в теоретической работе, выполненной в 1925 году Крамерсом и Гейзенбергом. Изменение частоты рассеянного света обусловлено переходом энергии падающего света в энергию колебаний молекул и обратно. Эти же колебания молекул приводят к излучению и поглощению инфракрасного света. Но если и то и другое связано с одними и теми же колебаниями, не удивительно, что частоты при этом совпадают.
Наш рассказ был бы неполным, если бы мы не сказали несколько слов о выдающемся индийском ученом, которому присуждена Нобелевская премия по физике за открытие комбинационного рассеяния света. Чандрасекхар Венката Раман выполнил первые самостоятельные исследования по оптике и акустике еще в 1906 году, во время учебы в университете в Мадрасе. Начальный период его деятельности несколько напоминает первые шаги великого физика Альберта Эйнштейна.
Окончив учебу, Эйнштейн пять лет служил в патентном бюро. Именно в этот период он выполнил классические исследования по теории броуновского движения, теории световых квантов, статистической теории поглощения и излучения света и создал колоссальное здание специальной теории относительности. Раман тоже был вынужден в течение десяти лет после окончания университета, с 1907 по 1917 год, служить в департаменте финансов в Калькутте и опубликовал за это время около 30 научных работ. Лишь после этого он был приглашен на кафедру Калькуттского университета. С 1921 года Раман начал исследования молекулярного рассеяния света, которые привели его к одному из замечательных открытий XX века.
Ч. В. Раман — прирожденный физик-экспериментатор. Однако он обладал большой эрудицией в сложных вопросах теории и полностью владел математическим аппаратом, что позволяло ему глубоко проникать в сущность исследуемого явления.
Центральной и ведущей темой его научной работы являлась оптика во всех ее аспектах. Но его самой любимой областью была физика кристаллов, особенно изучение алмазов.
В 1921 году Раман приступил к систематическому исследованию рассеяния света в прозрачных средах, первым крупным его шагом было обнаружение опалесценции в образцах чистого кварца и льда. Явление заключается в том, что прозрачные в проходящем свете кристаллы при боковом освещении оказываются мутными. Поразительно, что во льду это явление было более сильным, чем в кварце, несмотря на более высокий показатель преломления последнего. Раман объяснил это большей сжимаемостью льда и указал, что рассеяние обусловлено флуктуациями плотности. Он доказал это, установив увеличение рассеяния при нагревании образца кварца.
В этих работах проявилась общность научных интересов Рамана и Мандельштама, которая привела их почти одновременно к замечательным результатам в одной области.
Впоследствии Раман возвратился к этим исследованиям и с помощью спектроскопа установил, что изменения частоты рассеянного света в чистом льде и в дистиллированной воде одинаковы. Эти изменения частоты обусловлены комбинационным рассеянием, то есть зависят от внутреннего строения молекул воды, а не от состояния, в котором она находится.
Исследуя двойное лучепреломление в кристаллах, Раман связал это явление с оптической анизотропией молекул и ионов, неоднородностью их свойств в различных направлениях. Это позволило на основании оптических характеристик кристалла сделать заключения о его структуре. Раман с успехом исследовал различные магнитооптические свойства кристаллических тел, а также магнитную анизотропию жидкостей.
После появления писем Рамана и Кришнана в майском и июльском номерах журнала «Природа» стало ясно, что одно и то же явление независимо и практически одновременно открыто и изучается в Москве и Калькутте, но московские физики изучали его в кристаллах кварца, а индийские — в жидкостях.
Замечательное открытие вызвало живой интерес среди ученых всего мира. Оказалось, что к близким результатам в конце апреля 1928 года независимо друг от друга пришли и французские ученые И. Рокар и Ж. Кабан, много занимавшиеся исследованиями рассеяния света.
Через некоторое время ученые вспомнили, что еще в 1923 году А. Смекаль на основе элементарной квантовой механики предсказал возможность появления в спектре рассеянного света новых спектральных линий, обусловленных внутримолекулярными колебаниями.
Вслед за работой Смекаля появились и другие теоретические исследования. В 1925 году Крамере и Гейзенберг провели подробное квантовое рассмотрение вопроса, а в 1926 году Шредингер и в 1927 году Дирак исследовали эту же задачу вполне современными методами.
Так физики-теоретики предсказали и подробно изучили новое явление. Вероятно, это не было известно Раману и Кришнану, Мандельштаму и Ландсбергу. Ведь в их первых статьях нет никаких указаний на связь открытого ими явления с тем, которое было уже предсказано и теоретически изучено.
После открытия комбинационного рассеяния в жидкостях Раман и Кришнам начали наблюдать это же явление в кристаллах. При этом была установлена связь строения кристалла со спектром комбинационного рассеяния, изучена температурная зависимость эффекта и получен ряд других ценных данных.
Важное значение имеет заключение Рамана о независимости нормальных колебаний решетки кристалла от состояния его поверхностей (от граничных условий) и четкое разделение «структурных колебаний» и «упругих колебаний» кристалла.
Особенно подробно Раман исследовал кристаллическую структуру алмаза — вещества, представляющего особый интерес с точки зрения физики. Раман и его сотрудники исследовали алмаз оптическими методами в видимом свете, а также с помощью инфракрасных, ультрафиолетовых и рентгеновских лучей. Изучались характеристики, общие для всех сортов алмазов, и тонкие различия между его разновидностями. Раманом и его школой было подробно исследовано и давно известное, но ранее не изученное явление люминесценции алмаза и обнаружено, что алмаз способен к двум различным типам люминесценции. На кристаллах алмаза проводились исследования термооптических, магнитооптических и других свойств кристаллических тел.
В 1947 году Ч. В. Раман был избран зарубежным членом-корреспондентом АН СССР. Ч. В. Раман был не только крупным ученым, но и выдающимся общественным деятелем. Ему была присуждена Международная Ленинская премия «За укрепление мира между народами» 1956 года. Из школы Ч. В. Рамана вышла блестящая плеяда ученых, среди которых есть и очень крупные специалисты, пользующиеся мировой известностью.
Что же такое комбинационное рассеяние света?
Подробные исследования обнаружили следующие основные черты этого явления. При прохождении пучка монохроматического (одноцветного) света через совершенно чистое, лишенное всяческих загрязнений вещество часть света рассеивается в стороны. Рассеянный свет содержит, кроме света первоначальной частоты, также свет измененных (комбинированных) частот. Разность этих частот и частоты падающего света зависит от свойств рассеивающего вещества и не зависит от частоты падающего света.
В результате на фотографии спектра рассеянного света каждая спектральная линия, излучаемая источником света, сопровождается группой линий измененной частоты — спутниками или сателлитами этой линии. Сателлиты расположены по обе стороны от основной линии, они появляются парами, расположенными симметрично на одинаковых расстояниях от основной линии. Как сказано выше, эти расстояния составляют характерную особенность рассеивающего вещества и не зависят от частоты основной линии. Число видимых сателлитов также зависит от свойств рассеивающего вещества. Характерно, что сателлиты, обладающие меньшей частотой, то есть расположенные с той стороны основной линии, которая ближе к красному участку спектра («красные» сателлиты), обычно ярче, чем те, которые расположены ближе к фиолетовому участку спектра («фиолетовые» сателлиты). Обнаружено, что разность частот основной линии и соответствующих сателлитов, которая является характеристикой рассеивающего вещества, обычно совпадает с частотами линий, наблюдаемых при изучении спектров этого же вещества в инфракрасных лучах.