Добавить в цитаты Настройки чтения

Страница 16 из 17



Существует, однако, и другое представление о поверхности Земли – тоже с ландшафтной точки зрения. Мы знаем, что под почвой всегда обнаруживается первичный слой горной породы, на котором и из которого, собственно говоря, почва и формируется. Называется такой слой почвообразующим. Под ним всегда залегает геологический слой, который подстилает почвообразующий пласт. Именно этот пласт – подстилающий – целиком и полностью и является начальной точкой отсчета земной поверхности. То есть отсчет вертикальной границы ландшафта начинают от подошвы подстилающей породы. В крайнем случае, за нижний предел принимают максимальную глубину проникновения корней деревьев в грунт – там, где растут деревья. Где их нет, находятся какие-то другие ландшафтные критерии и соответственно глубины, а также высоты. В большинстве случаев корни дерева, в зависимости от вида и возраста, могут осваивать поверхностные и приповерхностные геологические слои. Это несколько метров. Например, дуб с многовековой историей способен пускать корни на глубину более 20 метров.

При таком подходе верхней границей в воздушной среде в основном устанавливается наибольшая высота взрослых деревьев, если таковые растения присутствуют. Самыми высокими деревьями на данный момент являются секвойи. Они распространены на Тихоокеанском побережье Северной Америки. Один экземпляр, растущий на севере Калифорнии, считается мировым рекордсменом по высоте – более 115 метров. Но это опять же редкие случаи. В основном деревья имеют не такие выдающиеся высоты – 10-30 метров (во взрослом состоянии) над уровнем поверхности грунта в месте своего произрастания.

В любом случае всегда принимаются во внимание средние значения вертикальных пределов ландшафта, если рассматривать этот пункт в обобщенном виде, а не в уникальном. Поскольку мир животных и растений очень разнообразен, динамичен и чрезвычайно зависим от внешних условий среды обитания, которые на Земле тоже отличаются крайней степенью многообразия.

Итак, в среднем, толщина земной поверхности лежит в пределах нескольких десятков метров. Это и есть активный, биогенный уровень ландшафтной сферы Земли (деятельный слой Земли), который в физической географии определятся как земная поверхность, с учетом, конечно, различных поправок.

Всё, о чем говорилось ранее в данном разделе, – это в общих чертах, и, безусловно, подобные позиции будут со временем дорабатываться и уточняться. Но существует одно проблемное обстоятельство, связанное непосредственно с пониманием земной поверхности с точки зрения физико-географической науки. Дело в том, что само понятие «поверхность Земли» может пониматься двояко, и это как раз связано с тем, о чем мы беседовали в первом разделе этой лекции. Рассмотрим два подхода к пониманию того предмета, о котором идет речь.

Первый подход рассматривает поверхность Земли как среду, контактирующую непосредственно только с воздушной оболочкой. Соответственно, данная среда разделяется всего на две плоскости: сухопутная и водная. Сухопутная поверхность – это вся суша, водная – верхний уровень всех водных объектов Земли, включая в первую очередь Мировой океан.

Другой подход, второй, значительно расширяет представление о поверхности – до такого сложного понятия, как «поверхность земной коры». А мы знаем, что земная кора не ограничивается берегом водоема, она продолжается и под океаном, и под любым озером, и даже под рекой. Хотя слово «даже» правильнее было бы использовать только по отношению к океаносфере.

И что мы получаем в таком случае?.. Три плоскости земной поверхности: наземная (сухопутная), водная и донная.

Здесь, выходит, мы имеем уже не две, а целых три пленки ландшафтной сферы. И к каждому уровню применяются свои подходы в установлении вертикальных пределов (толщины) земной поверхности.

О главном – наземном – уровне мы поговорили выше. Но в океане, как известно, морские животные и рыбы, а тем более микроорганизмы, по существу, насыщают почти всю толщу воды. Таким образом, по данному показателю (распространение жизни) мы уже не можем устанавливать адекватные ландшафтные пределы в океанской сфере, а включить весь океан (по вертикали) в понятие «земная поверхность» тоже было бы не совсем правильно. Поэтому в грубом расчете и условно принимается во внимание примерно тридцатиметровый слой морской воды, активно взаимодействующий с тропосферой и ее составляющими. С донными ландшафтами – практически аналогичная ситуация: тот же 30-метровый слой водной массы, но уже придонный. А внутри самого дна ландшафтные показатели способны опускаться на глубину несколько метров.

Это касается и крупных озёр.



В водной обстановке вообще очень трудно что-либо установить, в том числе в силу ее большой подвижности и переменчивости, и ландшафтные пределы там – это в значительной мере условность.

Шарообразность – глобальная черта поверхности всех планет

Все известные науке планеты, спутники, а также звезды обладают одним общим фундаментальным свойством – шарообразной формой. С геометрических позиций такие космические объекты, конечно, не представляют собой идеальные шары – в силу их вращения (осевого, орбитального), внутреннего развития и прочих факторов, влияющих на морфологию поверхности. Но, по крайней мере, все эти образования в глобальном плане обладают свойством шарообразности, несмотря на все шероховатости, неровности их облика.

Все мы знаем, что поверхность шарообразного тела тоже шарообразна, поскольку, как мы уже говорили, любая поверхность не обнаруживает себя самостоятельным природным формированием: она принадлежит тому объекту, представителем которого является.

Главнейшим следствием шарообразности, т. е. естественной кривизны земной поверхности является то, что полуденные солнечные лучи падают на Землю под разным углом: от 0° (в Арктике и Антарктике) до 90° (в тропиках). Здесь, как мы видим, учитывается только наиболее высокое положение солнечного диска над линией горизонта – полуденное солнце, поскольку в течение светового дня диск перемещается по небосводу и вместе с этим соответственно меняется и угол падения лучей – от 0° (рассвет) до 0° (закат).

Следует отметить, что угол падения солнечных лучей соответствует и равен высоте солнца над уровнем горизонта. Это равнозначные понятия (причем и то, и другое измеряется в градусах), но при этом первое зависит от второго.

Поскольку Земля вращается вокруг Солнца, и земная ось вращения наклонена под определенным углом к плоскости земной орбиты, то угол падения полуденных солнечных лучей в любой конкретной точке нашей планеты плавно (с каждым новым днем) и обратимо меняется по сезонам (с конца июня до конца декабря убывает, а с конца декабря до конца июня возрастает). И поэтому мы можем говорить о том, что на каждой широте, даже на экваторе, наблюдается свой годовой диапазон угла падения солнечных лучей в полдень. Зимой (в день зимнего солнцестояния) наблюдается наименьшее положение солнца над линией горизонта, а летом (в день летнего солнцестояния) – наибольшее. Допустим, на широте 45° в Северном полушарии такой диапазон лежит в пределах от 21,5° до 68,5°; на полюсах – от -23,5° (ниже уровня горизонта) до 23,5°; на экваторе – от 66,5° до 90°.

От годового диапазона высоты полуденного солнца зависит самое важное для нас – степень нагрева земной поверхности. Чем больше крайние значения данного диапазона приближены к максимуму (90°), тем сильнее в течение года коротковолновая электромагнитная солнечная радиация прогревает участок земной поверхности, а через нее и воздух (сам воздух практически не нагревается при прохождении через него лучей). Поэтому: чем ближе к экватору находится местность (по широте), тем теплее климат…

Итак, меньше всего солнечного тепла получают полярные широты, поскольку там лучи как бы скользят по поверхности, почти не нагревая ее; а больше всего – экваториальные и приэкваториальные (тропические) регионы: лучи падают более или менее отвесно в течение всего года, и каждый квадратный метр земли из-за этого получает наибольшее количество энергии.