Добавить в цитаты Настройки чтения

Страница 53 из 64

Как же устроена радиолиния для передачи электроэнергии? Солнечные батареи преобразуют энергию солнечного света в постоянный ток, который подводится к генераторам колебаний сверхвысоких частот, то есть служит для них источником электропитания. Генераторы преобразуют постоянный ток в колебания сверхвысоких частот — радиоволны.

Техника генерирования и усиления колебаний сверхвысоких частот хорошо освоена промышленностью и интенсивно развивается и совершенствуется. Например, в США ежегодно производится более миллиона сверхвысокочастотных приборов на общую сумму полмиллиарда долларов. На сегодняшний день известны свыше тысячи типов приборов для генерации радиоволн, мощность каждого из которых превышает несколько киловатт, но пока наиболее подходит амплитрон — прямой "родственник" прибора, с которого, можно сказать, и началось широкое использование радиолокации…

Во время второй мировой войны американская фирма "Белл" не раз помещала на страницах журналов один и тот же рекламный снимок: часовой с винтовкой охраняет ящичек с большими сургучными печатями. Внизу подпись: "Тут хранится самая большая тайна этой войны". В 1946 году фирма опубликовала снимок с содержанием ящичка. В нем лежал магнетрон — прибор, который имел действительно большое военное значение. Без него не могли бы эффективно работать радары тех лет. Уинстон Черчилль, похваляясь, назвал радар чисто английским изобретением. Однако тайной магнетрона владели не только Англия и США. Его изобрели и впервые использовали в нашей стране. В 1924 году в Харьковском университете под руководством и по предложению профессора Д. А. Рожанского его учениками были начаты работы, которые привели к созданию магнетрона. Об этих исследованиях и их результатах было опубликовано в журнале Русского физико-технического общества в 1925 году. Впоследствии харьковские ученые создали экспериментальный радиообнаружитель "Зенит", который был первой радиолокационной станцией, определявшей три координаты цели, что было важно для управления стрельбой зенитной артиллерии. Испытывался "Зенит" в боевых условиях в 1941 году, защищая небо столицы. Своей трехкоординатностью "Зенит" был обязан магнетрону. Он генерировал короткие, дециметровые волны, и при сравнительно небольших размерах антенны можно было определять не только азимут, но и высоту цели (а точнее, связанный с нею угол места цели). В других радиолокаторах, созданных в то время в нашей стране и за рубежом, в качестве передатчиков использовались триодные лампы, которые генерировали более длинные — метровые волны. Поэтому локаторы не могли определять третью координату — высоту цели. Слишком велик для этого должен был быть вертикальный размер антенны. Лишь позднее в английских станциях появились магнетроны. К сожалению, начавшаяся Великая Отечественная война, потеря производственной базы на европейской территории страны не позволили быстро наладить серийный выпуск таких сложных систем, какими являются радиолокационные станции.

Амплитроны, которые предполагают не пользовать в радиолинии электропередачи космос — Земля, это, по существу, модернизированные магнетроны. Для амплитрона характерен высокий коэффициент полезного действия (вполне реальны значения около 90 процентов) и малая удельная масса (отношение полной массы прибора к его выходной мощности). Ученые определили, что если воспользоваться для создания передатчика радиолинии комплектом амплитронов с выходной мощностью каждого в пять киловатт, то оптимальная длина рабочей волны линии электропередачи, при которой масса прибора и его стоимость будут минимальны, лежит вблизи 12 сантиметров.

Соперничают с амплитронами другие сверхвысокочастотные приборы — клистроны. Хотя их коэффициент полезного действия меньше (70–80 процентов), стоимость и удельная масса больше, однако эти приборы более мощны, и потому их понадобится меньше, чем амплитронов, что облегчит сборку передатчика на орбите.

Для того чтобы передать с орбиты и принять па Земле радиоволны — переносчики электроэнергии, — нужны передающая антенна в космосе и приемная на Земле. Как подсчитали ученые, их оптимальные размеры таковы: передающая антенна около одного километра в диаметре, а приемная около десяти километров. При таких размерах стоимость радиолинии будет минимальной, а коэффициент полезного действия максимален. В уже упоминавшемся проекте солнечной электростанции передающая антенна располагается между двумя прямоугольными решетками с кремниевыми элементами.





Приемная и передающая антенны должны быть точно ориентированы друг относительно друга. Во-первых, для того, чтобы основная часть энергии, передаваемая с орбиты, не пропадала зря (в принципе потери неизбежны из-за так называемых боковых лепестков антенного луча), и, во-вторых, по соображениям безопасности: ведь интенсивный поток сверхвысокочастного излучения не безвреден для человека.

Хотя электростанция будет находиться на стационарной орбите, однако ее точка стояния будет незначительно, но все-таки перемещаться относительно наземного пункта. Это приведет к отклонению луча передающей антенны от требуемого положения. Источники возмущающих движений станции — неоднородность гравитационного поля Земли, возмущающее действие гравитационных полей Луны и Солнца, давление света и, в свою очередь, противоположное давление, вызываемое отдачей сверхвысокочастотного излучения (передатчик радиолинии действует словно реактивный двигатель, только вместо сопла — антенна, а вместо газов — сверхвысокочастотное излучение). Уходы точки стояния придется корректировать с помощью корректирующих двигателей. Антенные лучи могут сдвигаться и по другим причинам, например, из-за изменений температуры и параметров аппаратуры в процессе эксплуатации… Поэтому должен быть обеспечен постоянный контроль за качеством ориентации и подстройка лучей антенн, если она нарушится.

Поскольку размеры наземной антенны довольно велики — десять километров в диаметре, то управлять ею довольно сложно. Лучше подстраивать передающую антенну в космосе: ее площадь в сто раз меньше, а сложность электронного управления лучом антенны в первом приближении пропорциональна ее площади. Ориентиром для подстройки луча передающей антенны будет служить тонкий опорный радиолуч, излучаемый наземной антенной.

Приемную антенну можно выполнить в виде большого числа крошечных антенн диполей. (Пример дипольной антенны — индивидуальная внешняя или внутренняя телевизионная антенна, только размер диполя для наземной антенны в несколько раз меньше, так как для телевидения используются метровые волны, а электроэнергию предполагают передавать на дециметровых волнах.) Приемная антенна будет не только принимать сверхвысокочастотное излучение, но и преобразовывать его в постоянный ток. Подобные антенны-преобразователи называются ректеннами. Для этого каждый диполь снабжен миниатюрным выпрямителем, который преобразует радиоизлучение в постоянный ток. Токи всех диполей складываются и подаются либо в высоковольтную сеть постоянного тока, либо преобразуются в напряжение переменного тока. Специалисты подсчитали, что коэффициент полезного действия радиолинии электропередачи, то есть с выхода солнечных батарей до выхода в наземную высоковольтную сеть постоянного тока, составит 58 процентов, а выходная мощность, отдаваемая потребителям, — 5 миллионов киловатт. Есть проекты электростанций и на десять миллионов киловатт. Разнятся они главным образом размерами солнечных батарей.

Поскольку каждый диполь снабжен выпрямителем, то ширина луча приемной десятикилометровой антенны будет такой же, как у отдельного маленького липолика, у которого в довольно широком секторе нет резко выраженного направления приема. В этом можно убедиться, если повращать вокруг вертикальной оси обычную индивидуальную телевизионную антенну. Изменяя се положение в довольно широком угловом секторе (±10–20°), мы не добьемся заметного улучшения приема (когда поблизости есть большие строения, то могут быть и значительные изменения качества приема, по они объясняются другими причинами). Поэтому огромную приемную антенну не надо будет ориентировать на передающую антенну, что значительно упростит ее конструкцию. Приемную антенну можно сконструировать таким образом, чтобы она была прозрачной для света. Тогда расположенную под ней территорию можно использовать для других целей, например, для сельского хозяйства.