Страница 6 из 51
Те, кому образ солнечной микросистемы стал являться уже после открытия Томсона, обладали, разумеется, громадным преимуществом: обнаружились кандидаты на роль атомопланет. Почему бы электронам не играть эту роль? Или похожую роль… Так, японский теоретик Нагаока сконструировал в начале века атомную модель в виде Сатурна с электронными кольцами. Это выглядело нисколько не фантастичней солнечной модели.
Естественно, и сам Дж. Дж. Томсон, выведший электроны на историческую сцену, тоже начал придумывать атом. Начал без промедлений — уже в 1898 году. Но он не прельстился возвышенными астрономическими параллелями. Он отвел электронам совсем прозаическую роль «изюминок в тесте». (Говорят, это сравнение ему и принадлежало, а вовсе не последующим популяризаторам. И от его «атома–кекса» или «атома–пудинга», право же, веяло свойственной ему в те годы общительностью и легкостью.)
А что было тестом в томсоновском атоме, если отрицательно заряженные электроны являли собою изюминки? Тестом служило само атомное пространство — «сфера с однородной положительной электризацией», как объявил Томсон. Так обеспечивалась электрическая нейтральность всякого атома как целого. Этому физическому требованию обязана была удовлетворять любая модель·.
Но любая атомная модель обязана была удовлетворять и еще одному требованию: быть устойчивой — этим свойством со всей несомненностью обладали реальные атомы долговечного земного вещества. А томсоновский кекс не обладал.
Дело в том, что электроны–изюминки покоились в положительном тесте. Меж тем уже была доказана теорема, объяснявшая, что любая система неподвижных зарядов обречена на развал: силы электрического взаимодействия — притяжения или отталкивания — тотчас выводят заряды из состояния покоя.
Томсону пришлось озаботиться улучшением своей модели. И через шесть лет, в 1904 году, он позволил электронам вращаться внутри атома отдельными группками — кольцами. Однако желанного правдоподобия снова не получалось. Непоправимый порок гнездился в произвольной идее положительно заряженного пространства. Но это пока оставалось нераскрытым — неразоблаченным экспериментально.
Пока… До Резерфорда…
4
Он был учеником Дж. Дж. — первым заморским докторантом в кембриджском старинном Тринити–колледже. Когда в 1895 году двадцатичетырехлетний сын новозеландского фермера там появился, старожилы отнеслись к нему свысока. Но уже вскоре по Кембриджу распространилась фраза одного заслуженного физика:
— Мы заполучили дикого кролика из страны антиподов, и он роет глубоко!
Правда, слово «кролик» не очень подходило к ново зеландцу: высокий рост, атлетическое сложение, громадный голос. Зато эпитет «дикий» подходил как нельзя лучше: признавалась первозданная сила выходца из антиподов и слышался намек на его необузданный нрав. А рыл он действительно глубоко — столько глубоко, что первым дорылся до атомных глубин. Не сразу — пласт за пластом. Но чудом редкой проницательности он не задерживался в толщах пустой породы. Мало кто жил в науке так продуктивно.
Электрон был открыт на его глазах. И даже при его существенном участии, как засвидетельствовал другой ученик Томсона — Р. Стрэтт (Рэлей–младший). Но тогда же воображение новозеландца захватила иная — недавно возвещенная во Франции — физическая новость: радиоактивность!
То была еще совсем не изведанная земля. И это он, Резерфорд, распознал в непонятной радиации урана два вида заряженных лучей, окрестив их греческими буквами «альфа» и «бета». Он показал, что альфа–лучи — поток тяжелых частиц с удвоенным зарядом « + », а бета–лучи — поток легких частиц с единичным зарядом «—»., И это он установил, что радиоактивность — самопроизвольный распад сложных атомов, идущий по статистическим законам случая. Вместе с еще более молодым Фредериком Содди, он, едва переваливший за тридцать, высказал и доказал ошеломляющее утверждение: в каждом акте радиоактивного распада сбывается сама собой вековечная мечта алхимиков — превращение одного химического элемента в другой.
К исходу первого десятилетия нашего века, пожалуй, никто не был так подготовлен к раскрытию структуры атома, как Резерфорд. И ничье воображение не было для этого так хорошо тренировано, как у него…
…Однажды на банкете в лондонском Королевском обществе известный астрофизик Артур Эддингтон глубокомысленно сказал, что электроны, быть может, всего только «умозрительная концепция», а реально они не существуют. Резерфорд встал, и, по словам очевидца, у него был вид рыцаря, готового вскричать: «Вы оскорбили даму моего сердца!» А вскричал он следующее:
— Электроны не существуют?! Ах, вот как! Отчего же я вижу их так ясно, как эту ложку перед собой?
(Помню, лет десять назад мне случилось пересказать этот исторический эпизод в одной ученой аудитории. Все весело рассмеялись, кроме молоденького доктора химических наук. «Чепуха! — с удивительной серьезностью возразил он. — Наш глаз не может увидеть шарик диаметром в 10–13 сантиметра!» И победительно поправил сползающие очки. Раздался насмешливый голос его соседа: «Старик, ты никогда еще не говорил ничего более разумного, но Резерфорда из тебя не получится!»)
Альфа–частицы новозеландец называл «веселыми малышами». Кажется, он вообще питал глубоко личные симпатии — вполне человеческие — ко всем незримым обитателям микромира. Когда в 1932 году его ученик Джеймс Чэдвик открыл предсказанный им, Резерфордом, нейтрон и Нильс Бор обрадованно признал реальность этой новорожденной нейтральной частицы, сэр Эрнест ответным письмом сердечно поблагодарил датчанина — так, точно речь шла и впрямь о пополнении его, Резерфордова, семейства. А к альфа–частицам у него всегда сохранялось особое пристрастие. Они принесли ему решающе важные сведения об устройстве атомов. Как надежнейший тонко проникающий бур, они–то и помогли ему еще в молодости «рыть глубоко»…
Десять лет ушло на установление основных свойств и природы альфа–частиц.
…Масса — учетверенный атом водорода. Заряд — в два раза больший, чем у электрона, и притом положительный: +2. Скорость движения при вылете из радиоактивного атома 10 — 20 тысяч километров в секунду. Химические свойства — как у элемента гелия, сперва открытого в спектрах солнца и только потом на земле…
Десять лет работы! При нынешнем лабораторном инструментарии на выяснение всего этого понадобился бы один месяц, если не один день. Но тогда еще только–только рождались основы для конструирования сегодняшнего инструментария атомной физики. Вместе с идеями рождались ее методы. Среди них — фундаментальнейший: изучение рассеяния микрочастиц при их прохождении через вещество.
Началось это тогда, когда восемь лет работы с альфа–лучами были уже позади, — летом 1906 года в Канаде, где Резерфорд возглавлял физическую лабораторию Макгилльского университета. Непредвиденное и почти неприметное событие взбудоражило его мысль: узенький пучок альфа–частиц, пронизав тонкий слюдяной листок, чуть–чуть расширился. Вот и все, что случилось. Но отчего это случилось?
Фотопластинка зафиксировала отклонение доли частиц на два градуса от перпендикуляра. Возможно, иные отклонялись еще сильнее, да только почернение пластинки от их падения было, очевидно, нечувствительно слабым. 2° — сущий пустяк. Однако летели–то массивные микропули и притом с огромными скоростями! Что же могло сбить их с прямого пути? По–видимому, только электрическое воздействие встречных атомов, когда они, заряженные альфа–частицы, пронизывали тонкий листок слюды. Несложный расчет дал внушительный результат: тут проявлялось отклоняющее действие силового поля напряженностью в 100 000 вольт на сантиметр. Резерфорд тогда же написал:
«Такой результат ясно показывает, что атомы вещества должны быть средоточием очень интенсивных электрических полей».
Первый же — случайный! — опыт по рассеянию альфа–частиц выводил на дорогу, ведущую в глубь атома, Новозеландец безошибочно почуял это.
Веселые малыши заслуживали его любви.