Добавить в цитаты Настройки чтения

Страница 8 из 101



Да, и они даже не менее древни. Первый камень, умело запущенный из пращи в далекого зверя, засвидетельствовал, что человек поставил себе на службу поле тяготения Земли. Первый костер, зажженный в пещере, чтобы осветить ее углы или обогреть ее как место ночлега, был проявлением такой же неосознанной власти человека над электромагнитным полем светового и теплового излучения.

Разумеется, поначалу эта власть была такой же призрачной, как господство человека над морской стихией, когда, едва научившись плавать, он не тонет, а держится на воде. Она и сегодня, эта власть над полями, далека от мечтаний фантастов.

Польский писатель Станислав Лемм вообразил машину, создающую столь могучее поле тяготения, что в нем световые лучи изгибаются в дугу окружности и человек, попадая в поле этой машины, становится издали невидимым: отраженные от него лучи, закругляясь, не могут дойти даже до близкого наблюдателя. Мечта занятная. Однако Лемм не смог бы обмолвиться и намеком на то, как ее осуществить.

Но машины, в которых создаются и работают электромагнитные поля, человек уже и сегодня строит с замечательной изобретательностью и высоким совершенством. Дубенский синхрофазотрон — одна из таких современных машин.

Из камеры ускорителя выкачивается вещество, чтобы энергия ускоряемых частиц не растрачивалась попусту в столкновениях с частицами посторонними. А «накачиваются» в камеру поля: на двух небольших участках — поле электрическое, на всем остальном круговом пути заряженного потока — магнитное поле.

Если продолжать сравнение с велосипедной шиной, то можно бы сказать, что участки электрического поля внешне подобны пояскам из резины другого цвета, какие наклеивают ребята на камеры в местах проколов. Эти пояски на языке электротехники называются ускоряющими контурами. Они расположены на противоположных концах одного диаметра, так что каждые полкруга частицы получают новую порцию энергии. Эти-то участки электрического поля играют в ускорителе роль богатого зеваки, транжирящего доллары, роль подхлестывающего бича или толкающей руки.

Именно потому, что снабжать ускоряемые частицы энергией призвано электрическое поле, они, эти частицы, обязательно должны быть заряженными. Но что это значит — быть заряженными?

Помните анекдот о студенте, которого профессор спросил, что такое электричество? «Ах, черт возьми, забыл! А ведь еще утром знал…» — ответил студент. «Вы должны обязательно вспомнить это, — сказал профессор. — А то был на свете один человек, который знал, что такое электричество, да и тот забыл!»

Этот старый анекдот не стареет. Сегодня наука об электрических явлениях — толстенные тома премудрости, это нервная система современной техники. Но простой вопрос — что такое электрический заряд? — остается без ответа. Как он «выглядит» — никто не знает.

«Я попрошу вас выслушать ответ экспериментатора на основной и часто предлагаемый вопрос: что такое электричество? Ответ этот наивен, но вместе с тем прост и определенен. Экспериментатор констатирует прежде всего, что о последней сущности электричества он не знает ничего», — так говорил в своей нобелевской речи знаменитый Роберт Милликэн, взвесивший электрон. А теоретик Герман Вейль сказал однажды: «…различие между обоими видами электричества представляет собою еще более глубокую загадку природы, нежели различие между прошлым и будущим».

Можно только одно сказать совершенно безошибочно: быть заряженным — значит создавать вокруг себя и нести с собою в пространстве электрическое поле.

Все взаимодействия в природе осуществляются, видимо, с помощью полей. У заряженных частиц есть собственное электрическое поле, и, очевидно, потому на них может действовать поле внешнее. В двух местах оно накачивается в камеру ускорителя своеобразными насосами — машинами, которые вырабатывают переменный ток высокой частоты. Этот ток и приносит с собою к пояскам ускорения нужное электрическое поле, а вместе с ним и нужную энергию.



Что же происходит с частицами на участках ускорения? Да примерно то же, что с камешками при горном обвале, когда они приобретают, падая вниз, тем большую скорость, чем выше гора. «Высота падения» в электрическом поле может быть измерена в разных единицах, но проще всего измерять ее в вольтах. К концу падения с высоты в 127 или 220 вольт каждый электрон приобретает энергию в 127 или 220 электроновольт. За счет этой-то энергии электроны, бегущие по проводам в наших домах, совершают свою полезную работу — накаляют нити в лампочках или спирали в электроплитках, питают радиоприемники или электромоторчики холодильников.

В камере ускорителя электрические горы (этот образ принадлежит покойному ученому и писателю Г. И. Бабату) гораздо выше, чем в нашей электросети. Дважды за время одного оборота частицы попадают на крутые электрические спуски, каждое «падение» с которых увеличивает энергию частиц на тысячу электроновольт. На 2 тысячи — за полный оборот, на 2 миллиарда — за миллион оборотов. И, наконец, энергия частиц достигает 10 миллиардов электроновольт после того, как они прокружились по кольцевой дорожке камеры 5 миллионов раз, совершив 10 миллионов падений.

А длина этой дорожки примерно 200 метров. За 5 миллионов оборотов частицы пролетают миллион километров. Это 25 кругосветных путешествий по экватору. Далекий путь. Сколько же времени должен он отнимать у частиц? Как долго вынуждены физики ждать того момента, когда впрыснутые в камеру частицы приобретут, наконец, нужную энергию?

Скорость спутников по земным масштабам кажется нам громадной — 8 километров в секунду. Обладай такою скоростью частицы в ускорителе, им на миллион километров пути понадобилось бы 125 тысяч секунд — более 2 тысяч минут — 34 часа. Ускоритель был бы пращой, которая стреляет один раз на протяжении полутора суток. С такой пращой нечего было бы и думать об успешной охоте. Но скорости, которые в мире больших тел представляются колоссальными, в мире элементарных телец показались бы совершенно ничтожными.

Восемь километров в секунду? Какие пустяки!

Когда спутник выходит на орбиту с этой поражающей наше воображение скоростью, на долю каждого грамма его вещества приходится действительно грандиозная величина — 10 с двадцатью четырьмя нулями, или триллион триллионов электроновольт энергии. Но ведь в каждом грамме примерно столько же, триллион триллионов, ядерных частиц — протонов и нейтронов. И вот получается, что полет даже с космической скоростью спутника сообщает каждой ядерной частице всего около одного электроновольта энергии. Нищенская порция, с точки зрения микромира.

В дубенском ускорителе протоны выходят из камеры настоящими миллиардерами. И потому в отличие от спутников они летят со скоростями, очень близкими к световой, преодолевая примерно 300 тысяч километров в секунду. Космический корабль, запущенный с такою скоростью, немедленно перестал бы быть спутником Земли: через секунду с небольшим он миновал бы Луну, через восемь с лишним минут покинул бы солнечную систему, а через четыре года уже подлетал бы к альфе Центавра — ближайшей к нам звезде, став первым галактическим кораблем. Однако мечты о таких скоростях осуществимы пока только в мире мельчайших крупиц вещества, где космические кораблики так малы, так легки, что в однограммовый кулечек их можно насыпать триллионы триллионов штук! Оттого-то, что они так невесомы, их удается разогнать почти до скорости света — до самой большой из возможных в природе физических скоростей.

Исчезающая малость размеров и масс в сочетании с невообразимо громадными скоростями делает мир элементарных частиц совсем не похожим на тяжелый и медленный мир земных вещей, среди которых живем и движемся мы, люди.

Весь путь в миллион километров — все 25 кругосветных путешествий по камере ускорителя — протоны совершают не за 34 часа, а за три секунды с третью. Синхрофазотрон в Дубне — ядерная праща, всегда готовая к бою.

На этом можно бы пока и остановиться, но нужно еще заполнить один зияющий пробел: не было сказано ни слова о том магнитном поле, которое рядом с электрическим заполняет камеру ускорителя. Ведь только на двух небольших участках частицы ускоряются, скатываясь с электрического спуска, а весь остальной их путь по камере пролегает в поле магнитном. Зачем же оно нужно? Зачем нужен круговой магнит весом в 36 тысяч тонн, который, как ребристая покрышка на колесе тяжеленного самосвала, плотно облегает тонкую велосипедную камеру ускорителя?