Страница 6 из 83
Бор оказался удивительно разносторонним элементом. Бораны — перспективное топливо, бориды — отличные жаростойкие сплавы. В содружестве с титаном и молибденом, цирконием и хромом, хромом и никелем и другими подходящими напарниками бор образует материал, сохраняющий длительное время прочность при очень высоких температурах. Вот почему бориды нашли применение в газотурбостроении, в производстве деталей ракетных двигателей. К ним прибегают, когда конструируют тяжело нагруженные детали, работающие в опасных для всех других материалов температурах.
Высокая огнеупорность, тугоплавкость боридов открыли им доступ в самые разнообразные отрасли производства.
Современная техника требует с каждым днем все большее количество хорошо очищенных редких и цветных металлов. Но эти вещества в расплавленном виде чрезвычайно агрессивны. Обычные огнеупоры их не держат.
Развитие специальной энергетики требует труб, по которым продолжительное время струились бы такие грозные жидкости, как расплавленный натрий, свинец, олово, цинк, висмут и их сплавы.
И тут и там главными претендентами на замещение вакантных «должностей» являются бориды. Из них уже делают или ими облицовывают особо ответственные тигли, теплообменники. Огнеупоры на основе борида циркония стоят десятки и сотни часов, ополаскиваемые беспощадными жидкими металлами.
Отклоняясь в сторону от огневой темы, скажем о твердости, износостойкости боридов. В качестве резцов бориды в составе металлизированной керамики не хуже сплавов на основе знаменитого вольфрама, но дешевле.
Неорганика кует оружие против высоких температур не только путем создания богатырских соединений.
В Институте химии силикатов АН СССР можно увидеть такой экспонат. К белому листу картона ниткой прикреплен уголек. Если хотите, вам разрешат потрогать его рукой. Уголек хрупкий, крошится.
Это была сталь. Обыкновенная сталь-3. Ее подержали в условиях, в которых работают жаростойкие сплавы. Кислород воздуха и высокая температура сделали свое черное дело. Так выглядело бы многое современное промышленное оборудование, будь оно выполнено из сталей наших дедов.
Как раз в Институте химии силикатов борьбу с коррозией ведут по линии «закрывания ворот», или, как в шутку говорят, «поверхностными методами».
Рядом с упомянутым обугленным кусочком бывшей стали на листе картона помещен второй образец. Он не примечателен ничем, кроме того, что несколько сотен часов провел на воздухе при температуре 900 градусов и остался невредимым.
Это та же сталь-3, но покрытая невидимой для глаза тончайшей жаростойкой пленкой. Она позволяет во многих случаях заменять высоколегированную сталь низколегированной или даже вовсе не легированной. Для народного хозяйства страны последствия подобных замен могут выразиться в крупных суммах сэкономленных денег и ценнейших металлов.
Такие пленки на основе тугоплавких окислов различных металлов и синтезируют в институте.
Заказчики на жаростойкие покрытия год от года становятся нетерпеливее и капризнее. Они подвергают свои конструкции сокрушительным тепловым ударам, изнурительным температурным толчкам. Например, газовую турбину «забрасывают» в процессе эксплуатации с 300 градусов до тысячи с лишним, причем делают это достаточно быстро. Резкие смены температур вызывают столь же резкие изменения размеров металлической детали. Жаростойкий панцирь может оказаться то мал, то велик. Применявшиеся прежде эмали под воздействием чрезмерных внутренних напряжений, вызываемых лихорадочными «вздохами» металла, трескались и отскакивали. Надо было найти такие «композиции», которые бы давали пленки с линейным расширением, близким к линейному расширению защищаемого материала. Они и были найдены. Это металлизированные керамики. В основе их — силикатная связка и кермет. Первая берет на себя огнеупорные функции (кремнезем плавится при температуре выше 1700 градусов), а задача второй составляющей — «подгонять рубашку к телу».
Пленка должна еще обладать большой прочностью. Мало ли что и где придется испытать одетой в нее конструкции! Если прежние силикатные покрытия отскакивали от образца при ударе, не превышающем 0,03 килограммометра, то новые не разрушаются и после удара силой в 0,8 килограммометра.
Но было бы ошибкой сказать, что наукой одержаны победы в генеральных сражениях с коррозией. Жаростойкие покрытия пока далеко не решают этой проблемы. Да и существуют не на все случаи, когда в них есть потребность. Для каждого металла, для конкретных условий, где ему надлежит работать, приходится подыскивать новое, оригинальное защитное одеяние. И тут из-за сложности теории вопроса сплошь да рядом безраздельно господствует эмпирическая разведка.
Неизменно сопутствуют металлу на всех стадиях его добычи и обработки расплавленные соли. Шлаки, всевозможные флюсы, ванны электрические или для термообработки, защитные покрытия, жидкости для очищения поверхности — это все расплавленные соли. Они выступают и еще в одной весьма модной роли — в качестве аккумуляторов — переносчиков теплоты, когда температуры особенно велики. Наконец, химики расплавленными солями извлекают ценные составляющие из некоторых видов природного сырья. Пример: соединения лития из сподумена. Так вот, если говорить о крупных проблемах, стоящих ныне перед неорганической химией, то расплавленные соли — область повышенного спроса на теорию.
Еще очень мало известно о температуре кристаллизации, летучести солей, о верхних температурных пределах существования расплава. Еще не проложены даже тропинки, по которым можно было бы устанавливать связи между диаграммами различных свойств этих жидкостей.
В качестве далекой, прицельной темы выдвигается разработка способа управления коррозией, вызываемой расплавленными солями. Как известно, в большинстве случаев они разъедают омываемые металлические поверхности. Но можно найти вещества, которые придадут бывшему «яду» свойства «бальзама». Заманчивая перспектива!
Трудно предсказать масштабы и все направления того грандиозного наступления техники будущего, которое сейчас готовится на совсем еще недавно целинной почве неорганики — на почве редких элементов.
Взять хотя бы группу редкоземельных.
«В чем их польза?» — ломали голову химики-неорганики, с колоссальным трудом выделяя и разделяя редкоземельных близнецов. Практики пожимали плечами: «В стекловаренном деле, в керамическом производстве… А еще где их можно использовать, неизвестно. Так что, товарищи химики, не торопитесь пока с выпуском этой дорогой продукции».
Но не много требовалось времени, чтобы странные, неизвестно для чего «предназначенные» природой уникумы превратились в стратегическое сырье. Впрочем, подобными превращениями XX век не удивишь. Он свидетель триумфального шествия в производственную практику таких славных выдвиженцев неорганики, как ванадий, кобальт, молибден, уран, плутоний, торий, бериллий и другие.
Стратегическими редкие земли стали, как только приглянулись атомной технике. Ученые заявили, что в этой области церий, гадолиний, самарий, европий и особенно иттрий найдут самое разнообразное применение.
Эти металлы ведут себя неодинаково по отношению к так называемым тепловым нейтронам. Вспомним, что тепловые, медленные, нейтроны играют в ядерном реакторе роль инициаторов и продолжателей цепных реакций, то есть ведущую роль. Если их число недостаточно — ядерное топливо лишь займется и «погаснет». Если их больше нормы — дело плохо: цепная реакция наберет такие темпы, что ее не отличишь от взрыва. Так что тепловых нейтронов обязательно должно быть не больше и не меньше, чем нужно для стабильного рабочего процесса.
Ядерное горючее — уран, плутоний или торий — загружается в реактор в металлических оболочках. Есть и другие металлические конструкции, находящиеся в активной зоне реактора. Конструктивный материал должен не мешать медленным нейтронам совершать свою работу по раскалыванию ядер, то есть, как говорят специалисты, иметь небольшое сечение захвата тепловых нейтронов. Иттрий как раз имеет малое сечение захвата. Да к тому ж он легок и прочен. Все это выдвигает элемент № 39 в первый ряд конструкционных материалов для атомной техники.