Добавить в цитаты Настройки чтения

Страница 35 из 83

По современным данным, в воде 88,81 процента O2 и 11,19 процента Н2.

Ученый мир был взволнован, услышав о получении Кэвендишем газа, который был во много раз легче обыкновенного воздуха. В 1781 году итальянский профессор Т. Кавалло наполнял водородом мыльные пузыри: они взмывали вверх и лопались, соприкасаясь с потолком.

В 1783 году в Париже под руководством профессора Шарля был запущен первый воздушный шар, наполненный водородом — самым легким изо всех газов. Для этого потребовалось 18 кубических метров газа — количество огромное по тем временам. Шарль расположил по кругу 12 больших бочек, насыпал в них опилок и налил разбавленной серной кислоты. В бочки были вделаны свинцовые трубы, по которым водород поступал в общий приемник. Из приемника газ шел в воздушный шар.

Вскоре воздушные шары стали наполнять только водородом. Серная кислота в те времена была довольно дорога, и для получения водорода пользовались железо-паровым методом Лавуазье. Он пропускал через ружейный ствол, раскаленный докрасна, водяной пар. Вода разлагалась, выделялся газообразный водород. Кислород же, соединившись с железом, давал окалину.

В 1794 году при северной армии французов, боровшейся с австрийскими интервентами, был организован корпус военных аэростатов. В битве при Флерюсе французы запустили аэростат с военным инженером, сообщавшим о передвижении войск неприятеля.

В XX веке водород в аэростатах был заменен гелием, затем и они сами были вытеснены самолетами. Но аэростаты сыграли свою роль в тревожные дни 1941 года. Они подымались ночью над Москвой и другими крупными городами. Вражеские летчики вынуждены были сбрасывать бомбы с большой высоты, без прицела, чтобы не напороться на тросы, привязанные к аэростатам.

Долгое время водород получали в основном для наполнения аэростатов. Вплоть до начала нашего века он не применялся в химической промышленности. Можно сказать, что в XIX веке не было промышленного производства этого газа. В больших количествах водород понадобился для синтеза аммиака. Потребовались миллионы кубометров водорода. Ведь для того чтобы получить 2 кубометра аммиака, необходим кубометр азота и три водорода:

N2 + 3H2 ↔ 2NH3.

В 1924 году у аммиака появился сильный конкурент по потреблению водорода. Это метиловый спирт — метанол — ценное сырье химической промышленности. Был внедрен в производство каталитический синтез спирта из окиси углерода и водорода:

СО + 2Н2 = CH3ОН.

Сейчас основным источником водорода служат водяной и коксовые газы, содержащие до 50–60 процентов водорода.

Немалое количество водорода идет на получение жидкого моторного топлива из угля. Уголь насыщают водородом, в технике этот процесс называется гидрированием. Он идет при большом давлении, высокой температуре и в присутствии железного или никелевого катализатора.





Большое значение имеет также гидрирование жиров. Жиры бывают животными и растительными. Сливочное масло вырабатывают из коровьего молока — это животный жир; подсолнечное — из семян подсолнечника — это жир растительный. Растительных жиров в мире производят почти в пять раз больше, чем животных, которые более питательны и вкусны. Животные жиры содержат большее количество водорода, чем растительные. «Нельзя ли добавить его в жиры растительные, чтобы повысить их калорийность?» — таким вопросом задались химики. Оказалось, можно. Для этого надо через жидкое растительное масло (подсолнечное, хлопковое, соевое, кунжутное), нагретое до 300 °C, пропустить водород. Причем на тонну масла необходимо 15 килограммов порошкообразного никеля — катализатора. По окончании реакции никель отделяют от масла фильтрованием через фильтрпресс. Получается твердый жир, из которого с небольшими добавками животного жира готовят маргарин — продукт, по калорийности мало уступающий сливочному маслу. Гидрированием растительных масел получают твердые жиры, пригодные для мыловарения.

Соединения водорода с элементами называются гидридами, а соединения водорода со щелочными и щелочноземельными металлами — солеобразными гидридами; они сходны по строению с галоидными солями. Эти гидриды очень активны: энергично реагируя с водой, они выделяют водород.

LiH + H2O = LiOH + Н2.

Интересны и по строению и свойствам летучие гидриды, особенно бороводороды (бораны) и кремневодороды (силаны).

По химическим свойствам бораны сходны с углеводородами. Бораны — отличное ракетное топливо: 1 килограмм пентаборана при сгорании выделяет больше тепла, чем 1 килограмм бензина (15 100 ккал/моль).

Третья обширная группа гидридов тяжелых металлов резко отличается от первых двух. Например, палладий в этой группе способен при комнатной температуре поглотить 850 объемов водорода. При этом металл еле заметно разбухает. Конечно, здесь нельзя говорить об образовании какого-либо определенного соединения. Железо растворяет водород в гораздо меньшей степени, но при высокой температуре оно поглощает довольно большое количество этого газа. При внедрении в производство синтеза аммиака инженерам доставила много неприятностей «водородная болезнь железа». При высокой температуре водород растворялся в стали, существенно снижая ее прочность.

Земная кора содержит 1 процент водорода по весу. Почти весь он находится в связанном состоянии — в воде и в органических соединениях: нефти, угле, растениях и т. д. В атмосфере — всего лишь пять стотысячных процента водорода.

Когда-то атмосфера Земли была восстановительной и содержала водорода во много раз больше. Появившийся в результате фотосинтеза растений кислород связал значительную часть водорода. С другой стороны, водород постоянно покидает земную атмосферу. Ведь это наилегчайщий газ, его молекулы наиболее подвижны. Он значительно быстрее других газов распространяется в пространстве.

Средняя скорость движения молекул водорода при комнатной температуре достигает 2 километров в секунду. Но в газе всегда есть молекулы, обладающие гораздо большей скоростью. Есть и движущиеся со скоростью 11,3 километра в секунду, достаточной для преодоления земного притяжения. Поэтому верхние, разреженные слои атмосферы постоянно теряют водород. Он улетает в космос. В космосе водород является преобладающим элементом. По современным подсчетам, часть вселенной, доступной наблюдению приборами, на 81 процент состоит из водорода, 18,7 процента из гелия и только 1 процент приходится на долю остальных 100 элементов таблицы Менделеева.

Радиоизлучение водорода — радиоизлучение вселенной. Нейтральные атомы газа, сталкиваясь между собой в межзвездном пространстве, излучают радиоволны длиною в 21 сантиметр. Это радиоизлучение повсеместно во вселенной, оно не поглощается космической пылью и доходит до самых отдаленных уголков Галактики. Оно позволяет узнать характер распределения водорода в Галактике, изучить движение межзвездного газа.

Радиолиния 21 сантиметр — основная и главная характеристика радиоизлучения вселенной; она открыта для изучения всем разумным существам. Надо думать, что наша планета не является исключением в бесконечной вселенной. Если мы предполагаем наличие мыслящих существ во вселенной, то и они по аналогии должны предполагать наше существование. Самый быстрый способ связи, известный нам, — это электромагнитные радиоволны. Наиболее разумная длина волны, данная нам природой, — 21 сантиметр.