Страница 6 из 11
Когнитивные психологи спорят, какой именно контекст внезапно превращает людей в логиков. Тут сгодится не любой конкретный сценарий – он должен описывать именно те виды логических задач, к которым мы привыкли в ходе взросления, а возможно, даже в ходе эволюции. Одна из тем, способных разблокировать логику, – контроль за осуществлением прав и выполнением обязанностей, другая – слежение за угрозами. Люди знают, что, для того чтобы проконтролировать соблюдение правила: «Если едешь на велосипеде, нужно надеть шлем», им нужно удостовериться, что на ребенке на велосипеде надет шлем и что ребенок без шлема на велосипед не садится.
Честно говоря, разум, который замечает нарушение условного правила, только если оно сигнализирует о мошенничестве или опасности, не назовешь истинно логичным. По определению для логики важна форма утверждения, а не его содержание: каким образом Р и Q соединяются операторами если, то, или, и, не, некоторые и все безотносительно того, что означают эти самые Р и Q. Логика – вершинное достижение человеческого ума. Она упорядочивает наш мыслительный процесс, помогая ему справляться с незнакомым или абстрактным содержанием, таким как законы государственного управления или науки. Воплощенная в кремнии, она превращает мертвую материю в мыслящую машину. Но неискушенный человеческий разум оперирует не универсальным, независящим от содержания инструментом с формулами вроде «[Если Р, то Q] эквивалентно не [Р и не Q]», в которые можно подставить любые Р и Q. Он вооружен набором инструментов более узкого назначения, сваливающими в одну кучу содержание проблемы и правила логики (без этих правил инструменты не будут работать). Людям непросто вычленить формулы и применить их к новым, абстрактным или на первый взгляд бессмысленным задачам. Для этого-то нам и нужны укрепляющие рациональность институты вроде системы образования. Они дополняют экологическую рациональность, с которой мы рождены и воспитаны, – наш животный здравый смысл и природное чутье – мощными инструментами мышления более широкого применения, которые лучшие умы человечества оттачивали тысячелетиями[36].
Простая задача на вероятность
Одной из известнейших телевизионных игр эпохи расцвета этого жанра была игра «Давайте заключим сделку» (Let's Make a Deal), выходившая в телеэфир с 1950-х по 1980-е гг. Ведущий, Монти Холл, стал широко известен в весьма узких кругах, когда в его честь назвали парадокс из области теории вероятности, в общих чертах основанный на сценарии шоу[37]. Участника ставят перед тремя дверьми. За одной из них новехонький сверкающий автомобиль. За двумя другими – по козе. Участник выбирает дверь, скажем дверь № 1. Нагнетая напряжение, Монти открывает одну из двух оставшихся дверей, скажем дверь № 3, и показывает зрителям козу. Дополнительно накаляя обстановку, он дает участнику возможность либо не менять решения, либо изменить его, выбрав другую дверь. Вы – участник. Что бы вы сделали?
Чуть ли не каждый остается при своем выборе[38]. Игроки думают, что, раз машина может оказаться за любой из трех дверей, а дверь № 3 из игры выбыла, шансы, что машина стоит за дверью № 1 или за дверью № 2, равны и составляют 50/50. Хотя никакого вреда переключение не принесет, они считают, что и пользы от него не будет. Поэтому они придерживаются первоначального выбора – либо по инерции, либо из гордости, либо из-за смутного ощущения, что проигрыш при изменении решения принесет им больше огорчения, чем победа – радости.
О парадоксе Монти Холла заговорили в 1990 г., когда о нем написали в колонке «Спроси у Мэрилин» в журнале Parade, который вкладывался в воскресные издания сотен американских газет[39]. Вела колонку Мэрилин вос Савант, в то время известная как «самая умная в мире женщина»: она была внесена в Книгу рекордов Гиннесса как обладательница самого высокого в мире IQ. Вос Савант писала, что участнику лучше бы передумать: шансы, что машина находится за дверью № 2, составляют два из трех, шансы, что она стоит за дверью № 1, – только один из трех. В ответ в журнал пришло около десяти тысяч писем (примерно тысяча из них – от обладателей ученых степеней, в основном от математиков и статистиков), в которых утверждалось, что она не права. Вот несколько примеров:
Вы прокололись, и прокололись по-крупному! Похоже, вы не понимаете действующих здесь базовых принципов, так что я вам объясню. После того как ведущий показывает козу, ваши шансы угадать правильно составляют один к двум. Поменяете вы свой выбор или нет, шансы не изменятся. Математической безграмотности в стране и так достаточно, и нам не нужно, чтобы ее распространяла еще и обладательница самого высокого в мире IQ. Стыдитесь!
Я уверен, что вы получите массу писем на эту тему от старшеклассников и студентов колледжей. Может, вам стоит сохранить себе пару адресов, чтобы при случае попросить помощи в работе над будущими колонками.
Может, женщины иначе понимают математические задачи – не так, как мужчины.
В числе несогласных был даже Пал Эрдёш (1913–1996), прославленный математик, настолько плодовитый, что ученые меряются своими «числами Эрдёша» – длиной кратчайшей цепи соавторов по публикациям, связывающей их с этим великим теоретиком[41].
Но математики-мужчины, свысока объяснявшие свое решение самой умной в мире женщине, ошибались, а вот она была права. Участнику лучше бы изменить свое решение. И нетрудно понять почему. Автомобиль может стоять за любой из трех дверей. Давайте подумаем о каждой из них и подсчитаем, сколько раз из трех вы выиграете, придерживаясь одной из двух возможных стратегий. Вы выбрали дверь № 1 – конечно, это просто мы ее так назвали; пока Монти придерживается правила: «Открой невыбранную дверь, за которой стоит коза; если коза за обеими, открой любую», шансы выиграть равны, какую бы дверь вы ни выбрали.
Скажем, ваша стратегия – «не менять выбора» (левая колонка на рисунке). Если машина стоит за дверью № 1 (слева вверху), вы выиграете. (Неважно, какую из двух оставшихся дверей откроет Монти, потому что вы все равно не переключитесь ни на одну из них.) Если машина за дверью № 2 (слева посередине), вы проиграете. Если машина за дверью № 3 (слева внизу), вы опять проиграете. Так что шанс выиграть, придерживаясь стратегии «не менять выбора», составляет один к трем.
Давайте теперь рассмотрим стратегию «изменить выбор» (правая колонка). Если машина за дверью № 1, вы проиграете. Если машина за дверью № 2, Монти открыл бы дверь № 3, так что вы переключитесь на дверь № 2 и выиграете. Если же машина за дверью № 3, он открыл бы дверь № 2, и, переключившись на дверь № 3, вы снова выиграете. Шанс выиграть при стратегии «изменить выбор» составляет два к трем, что в два раза больше, чем при стратегии «не менять выбора».
Прямо скажем, не бином Ньютона[42]. Не хотите просчитывать вероятности – можете сами сыграть пару раундов, вырезав из картона дверцы и пряча за ними игрушки, а потом суммировать результаты, как сделал однажды Холл, чтобы убедить скептически настроенного журналиста. (А еще в эту игру можно сыграть онлайн.)[43] Или же вы можете призвать на помощь интуицию и рассудить так: «Монти знает ответ и дает мне подсказку; будет глупо ею не воспользоваться». Почему же математики, университетские профессора и другие важные персоны так опростоволосились?
36
Экологическая рациональность: Gigerenzer 1998; Tooby & Cosmides 1993; см. Pinker 1997/2009, pp. 302–6.
37
Эту задачу впервые сформулировал автор книг по популярной математике Мартин Гарднер (1959), который назвал ее «задачей трех узников»; в честь Монти Холла ее окрестил статистик Стивен Селвин (1975).
38
Granberg & Brown 1995; Saenen, Heyvaert, et al. 2018.
39
Crockett 2015; Granberg & Brown 1995; Tierney 1991; vos Savant 1990.
40
Crockett 2015.
41
Vazsonyi 1999. Мое число Эрдёша – 3, благодаря публикации Michel, Shen, Aiden, Veres, Gray, The Google Books Team, Pickett, Hoiberg, Clancy, Norvig, Orwant, Pinker, Nowak, & Lieberman-Aiden 2011. Ученый-информатик Питер Норвиг выступил соавтором доклада другого ученого информатика (и соавтора Эрдёша), Марии Клаве.
42
С другой стороны, нормативный анализ дилеммы Монти Холла вызвал бурю комментариев и споров; см. https://en.wikipedia.org/wiki/Monty_Hall_problem.
43
Попробуйте: Math Warehouse, Monty Hall Simulation Online, https://www.mathwarehouse.com/monty-hall-simulation-online/.