Добавить в цитаты Настройки чтения

Страница 3 из 11

I. Истоки

Глава 1. Остановка в мире движущейся воды

Задолго до образования Земли субатомные частицы, возникшие в результате первых мгновений Большого взрыва, образовали плазму из водорода и гелия. Гравитация стянула их в ядерном синтезе, который подпитывал первые звезды – печи, в которых ковались такие более тяжелые элементы, как кислород. Материал после смерти этих первых звезд содержал кислород и водород, которые вступали в реакцию. Так появилась вода.

Вот почему вода распространена по всей Солнечной системе. Сатурн, Уран, Нептун, Марс, Юпитер и множество их спутников образовались из туманности, которая содержала воду – остатки, созданные предыдущими поколениями звезд. Однако Земля не могла в начале своего существования покрываться водой так, как сегодня. Центральная часть Солнечной системы, где четыре с половиной миллиарда лет назад образовалась наша планета, была поначалу слишком горячей, чтобы на поверхности могла сохраняться жидкая вода. Поэтому любая вода на поверхности Земли должна была либо появиться там после остывания (принесенная астероидами), либо высвободиться из внутренних частей планеты в виде пара. В любом случае количество воды на Земле с тех пор было фиксированным.

Если бы вода распределилась по поверхности планеты однородным слоем, то его толщина составила бы немногим более двух тысяч семисот метров. Это число может показаться большим, однако по сравнению с радиусом Земли – около 6400 километров, в две с лишним тысячи раз больше, – она безнадежно тонка. Сегодня 97 % всей воды находится в океанах. Почти все 3 оставшихся процента – ледяные шапки и грунтовые воды. В сжиженном состоянии первые дали бы слой примерно в 60 метров, а вторые – 20. То, что осталось – менее пятидесятой доли процента, – вода, содержащаяся в озерах, реках и почвах, которая создает среду вокруг земных созданий, включая людей. Если ее распределить по планете, толщина слоя не дойдет и до полуметра. Количество водяных паров в атмосфере – важнейший параметр в нашем повествовании – еще меньше: два с половиной сантиметра, а кристаллики льда и капельки воды, образующие облака на небе, создали бы слой в толщину человеческого волоса.

Количество воды в каждом из таких резервов менялось за время существования планеты (были периоды, когда мир покрывался льдом целиком, были времена, когда льда не было совсем), однако большая часть этих перемен происходила не при людях. Гоминиды появились и размножались в период относительной стабильности климата планеты в течение последних трех миллионов лет. Однако в водной среде в это время происходили весьма существенные изменения, наиболее значительными из которых стали ледниковые периоды – изменения ледяного покрова с периодичностью примерно в сто тысяч лет.

На распространение льда влияют небольшие периодические изменения орбиты планеты вокруг Солнца и наклона ее оси, которые меняют количество энергии, достигающей Земли. Какой бы небольшой ни была реакция планеты, по человеческим меркам она весьма серьезна: 20 000 лет назад, во время максимума последнего оледенения (пика последнего ледникового периода), лед покрыл большую часть Северного полушария, от Канады до России, и большинство гор, от Альп до Гималаев. Во многих местах толщина ледяных щитов превышала километр. Лед вобрал в себя столько воды, что общемировой уровень океана находился примерно на 130 метров ниже, чем сегодня. Вопросы, почему и как относительно небольшие изменения в освещенности могут приводить к такой серьезной реакции, до сих пор вызывают серьезные споры. Однако почти во всех объяснениях ключевую роль играет сама вода. Осознание этой роли требует понимания того, как вода взаимодействует с солнечной энергией.

Солнце создает электромагнитное излучение в широком спектре длин волн, пик которого приходится на промежуток от четверти до трех четвертей микрометра, и эту полосу человеческий глаз интерпретирует как видимый свет[3]. Когда этот солнечный свет достигает поверхности Земли, он нагревает ее. Затем поверхность планеты отправляет обратно в космос инфракрасное излучение, длина волны которого намного больше[4]. Кислород и азот, составляющие более 99 % объема атмосферы, поглощают и рассеивают видимый свет (отсюда голубой цвет неба), однако для инфракрасного излучения они в значительной степени прозрачны.

Если бы атмосфера состояла исключительно из этих двух газов, тепло у поверхности практически бы не улавливалось, и планета стала бы намного, намного холоднее. Однако водяной пар в значительной степени прозрачен для видимого света, и при этом слегка изогнутая молекула воды из трех атомов оказывается особенно эффективной при перехвате и поглощении инфракрасного излучения. В результате водяной пар становится огромным одеялом над планетой, который удерживает уходящее тепло: он основной парниковый газ. Из всех форм, в которых вода существует на Земле, самая главная – водяной пар, поскольку именно его наличие в атмосфере и делает планету пригодной для жизни.

Однако вода действует не только как парниковый газ. Это также усилитель изменений. Атмосфера поглощает водяной пар до насыщения, но эта точка насыщения сама по себе зависит от температуры. Чем выше температура, тем больше воды может поглотить атмосфера: на каждый лишний градус температуры – на 7 % больше воды. Чем больше воды в атмосфере, тем она более непроницаема для инфракрасного излучения. Чем она более непроницаема, тем выше ее температура. Такая обратная связь водяного пара оказывается мощным усилителем.





Небольшое изменение в количестве солнечного света, например, связанное с изменением орбиты (или, если на то пошло, небольшое изменение концентрации углекислого газа), само по себе оказало бы соизмеримо малое влияние на температуру планеты. Однако из-за такой обратной связи небольшое повышение температуры увеличивает количество воды в атмосфере, что еще больше усиливает изменение температуры. Климат Земли чувствителен, потому что в нем есть вода. Климат Земли управляется водой.

В первой главе повествования о воде и людях нужно описать роль этой влиятельной вездесущей субстанции в развитии сложных обществ. Каким бы серьезным ни был пик последнего ледникового периода, воздействие на людей стало еще сильнее, когда лед начал таять. Около 19 000 лет назад щиты Северного полушария стали отступать. Это таяние прерывали отдельные резкие региональные перемены. Например, между четырнадцатью и одиннадцатью тысячами лет назад происходило похолодание, которое называется поздним дриасом. Название периоду дала дриада восьмилепестковая (Drýas octopétala) – цветущий холодолюбивый кустарничек. Ископаемые следы этого растения показали внезапное его распространение, словно под воздействием заклинания. Во время позднего дриаса климат в Северном полушарии на тысячу лет вернулся к ледниковым условиям, а затем снова произошло потепление.

Вода, стекавшая с ледниковых щитов, создавала ландшафт. Она разрушала горы, прорезала долины, затопляла равнины и формировала береговую линию. На всякий случай уточняю, что не стоит воспринимать эти явления в виде каких-то внезапных перемен: в пиковый момент около 12 000 лет до нашей эры таяние вызывало повышение уровня моря на четыре метра в столетие, то есть на четыре сантиметра в год. Однако эти перемены были вполне измеримы в течение одной человеческой жизни.

Популяция Homo sapiens увеличилась в Африке около 130 000 лет назад, между двумя последними ледниковыми периодами. В итоге человек разумный заменил все другие виды гоминидов: человека прямоходящего, гейдельбергского человека и неандертальца. Но все современные свидетельства человеческой культуры – то есть все выходящее за рамки простого существования – пришли к нам почти исключительно из последних 20 000 лет, когда наша планета покинула последний максимум оледенения. К моменту примерно в 5000 лет до н. э. появилось оседлое земледелие, развились разные формы протописьменности, начали создаваться сложные общества. Таким образом, годы примерно от 18 000 до 5000 до н. э. были не просто временем больших изменений для водного ландшафта – они также имели решающее значение для создания людьми организованных сообществ.

3

 Точнее, видимый свет – это полоса от 0,38 до 0,78 микрометра (380–780 нанометров). – Прим. пер.

4

 От 0,78 до 1000 мкм. – Прим. пер.