Страница 53 из 54
В солнечной системе по крайней мере шесть небесных тел могут быть обитаемы. Водяная мантия может быть и у Тритона, спутника Нептуна, и у Титана, спутника Сатурна. Кроме того, предполагают, что и на Марсе под слоем поверхностного льда есть большие водные бассейны.
Небесные тела с большими подповерхностными водоемами, которые могли бы послужить колыбелью жизни, вероятно, есть и за пределами солнечной системы. И вот что важно подчеркнуть: условия в эндогидросферах самых разных небесных тел должны быть весьма схожими, ибо мало зависят от расстояния до центральной звезды и ее характеристик. Так не правильнее ли думать, что жизнь под поверхностью распространена во вселенной не менее, а то и более широко, чем привычная нам жизнь земного типа, которая не способна обойтись без сложной атмосферы и гидросферы, жизнь, очень чувствительная к световому и тепловому режиму, жизнь, плохо защищенная от космических катаклизмов?
Гелиоэнергетика: реальность и перспектива
В космосе безбрежное море солнечных лучей, источник практически неисчерпаемой энергии. Только за одну минуту Солнце посылает на Землю столько энергии, сколько за полтора года вырабатывают все электростанции мира. Количество солнечной энергии на единицу поверхности в космосе в 10 раз больше, чем на Земле. Там нет экранирующего влияния атмосферы, облачности, туманов. Кроме того, космическая энергетика экологически самая чистая.
Однако чтобы создать в космосе промышленные солнечные электростанции, предстоит решить еще множество проблем. Рассмотрим главные из них.
Существующие сегодня преобразователи солнечной энергии в электрическую, которыми оснащается большинство космических аппаратов, работают на принципе фотоэффекта, происходящего в кремниевых пластинах при освещении их солнечными лучами. Множество кремниевых элементов (площадью в несколько квадратных сантиметров и толщиной в доли миллиметра) соединяются между собой электрически и размещаются на общей панели, располагаемой перпендикулярно к солнечному свету. Коэффициент полезного действия кремниевых преобразователей — 10–12 процентов. В итоге с одного квадратного метра солнечной батареи мы можем снять максимум 140–170 ватт электроэнергии.
Можно подсчитать, что если мы захотим получить в космосе 10 миллионов киловатт (а именно такие мощности считаются сегодня наиболее рентабельными), то площадь нашей солнечной батареи должна составить 60–70 квадратных километров. Развернуть такую панель в космосе — задача не из простых.
Далее. Один квадратный метр солнечной батареи с учетом веса конструкции сегодня весит 5-10 килограммов. Следовательно, электростанция мощностью в 10 миллионов киловатт будет весить от 300 тысяч до 600 тысяч тонн. Невиданные веса полезной нагрузки! А ведь таких электростанций нужны тысячи. Поистине фантастическими становятся веса конструкционных материалов, которые мы должны будем вывести в космос.
Известно, что для выведения на околоземную орбиту одного килограмма полезного груза жидкостной ракетой требуется порядка 30 килограммов ракетного топлива. Для выведения груза на стационарную орбиту, где как раз и предполагается размещать солнечные электростанции (в целях обеспечения непрерывной связи с земным потребителем), топлива потребуется в несколько раз больше. В итоге необходимое количество топлива для доставки одной только станции на синхронную орбиту достигает десятков миллионов тонн. Цифры, прямо скажем, астрономические. Где взять столько топлива? И во что это обойдется?
Подсчитано, что для выведения на стационарную орбиту с помощью ракет на углеводородном топливе грузов для 1000 солнечных электростанций надо сжечь столько топлива, что по массе оно будет соизмеримо с количеством углекислого газа в атмосфере Земли. Попадание такого количества продуктов сгорания в земную атмосферу по экологическим соображениям недопустимо…
Проблематичной остается сегодня и задача транспортирования полученной в космосе электроэнергии на Землю. На каком принципе должна осуществляться передача такого огромного количества энергии с высоты в 36 тысяч километров с приемлемыми энергетическими потерями и экологическими издержками? Мнение специалистов в вопросах энергетики склоняется к тому, что рациональнее использовать для этих целей микроволновое излучение. Для этого на станции должны быть установлены специальный преобразователь электрической энергии в микроволновое излучение и передатчик с остронаправленной антенной, а на Земле — приемник излучения диаметром в несколько километров и преобразователь волн в промышленную энергию.
Сверхвысокочастотной передаче отдается предпочтение потому, что она устойчива в условиях космического холода, микроволновый луч беспрепятственно пронзает толщу атмосферы, не рассеивается облаками, имеет высокий коэффициент преобразования. Недостатком этого предложения является главным образом певшая неясность относительно того, как скажется на экологической обстановке длительное воздействие микроволнового облучения поверхности Земли, не повлияет ли оно на работу наземных электронных устройств — радиолокаторов, ЭВМ, средств связи, не будет ли катастрофически уничтожать озонную защиту планеты, изменять ионосферу и магнитосферу Земли. Другими словами, не потеряем ли мы больше, чем приобретем.
Не исключено, что наиболее приемлемым для передачи энергии на Землю окажется не микроволновое излучение, а лазерный луч. Его применение позволит резко снизить размеры приемных антенн — до нескольких десятков метров в диаметре, и соответственно уменьшится неблагоприятное воздействие излучения на природную среду.
Не решены пока еще и такие вопросы, как собственно сборка космической станции, монтаж на огромной площади миллионов фотопреобразователей, организация работы в космическом пространстве сотен монтажников, создание специализированных буксиров, инструмента… А как обеспечить поддержание таких огромных сооружений в заданных точках стационарной орбиты, их постоянную ориентацию на Солнце, температурный режим станций, замену выработавших ресурс фотоэлементов, безопасность обслуживающего персонала от микроволнового или лазерного облучения?..
Так реальны ли космические электростанции?
Оптимисты говорят — да. И не только говорят, но и работают. По мнению одного из создателей космической техники, К. П. Феоктистова, создание солнечных электростанций в космосе — один из самых перспективных путей получить от космической техники весомую отдачу в интересах всего человечества, сделать космонавтику высокорентабельной сферой хозяйственной деятельности землян.
Пути преодоления по крайней мере технических сложностей уже наметились. Один из первых шагов — создание легких и дешевых солнечных преобразователей пленочного типа. Каждый квадратный метр солнечной батареи с учетом несущей конструкции должен весить не более килограмма, а на каждый киловатт вырабатываемой энергии должно приходиться не более двух килограммов общей массы станции. Важным преимуществом пленочных преобразователей является возможность их относительно простого монтажа на ферменной конструкции станции. В США уже разрабатывается очень тонкая пленка медно-индиевого селенида — сульфида кадмия, осажденного на недорогой подложке. И хотя коэффициент полезного действия таких преобразователей несколько ниже кремниевых элементов (около 10 процентов), считается, что к 1990 году они будут довольно дешевы. Делается попытка организовать производство полукристаллического кремния. В расплавленном состоянии его можно заливать в формы, а после застывания резать на пластины для изготовления солнечных элементов. Создание пленочных преобразователей позволит в десятки раз снизить веса солнечных электростанций при тех же проектируемых мощностях.
Продумываются конструктивные и технологические схемы монтажа электростанций в космосе. Вот как это будет выглядеть. На высоте 500 километров над поверхностью Земли собирается первая ячейка будущей станции площадью 100 × 100 метров. По мере поступления новых грузов, выводимых ракетами на химическом топливе, исходная конструкция постепенно наращивается до десятков квадратных километров. После окончания монтажа и проверки функционирования станции она переводится на свое рабочее место на стационарной орбите с высотой 36 тысяч километров над экватором. Перевод может осуществляться сравнительно маломощными двигательными установками, работающими на химической, ядерной или электрической энергии. В последнем случае энергию для двигателей будет поставлять сама станция. Медленное перебазирование станции позволит многократно уменьшить веса несущей конструкции станции: ведь перегрузки будут незначительными.