Добавить в цитаты Настройки чтения

Страница 27 из 50



Вся камера и особенно угольная пластинка, через которую выбрасывается плазма, тотчас бы расплавились, если бы не было охлаждения. В камеру по касательной врывается струя воды или инертного газа, которая, испаряясь, охлаждает стенки и спасает их от гибели. Но охладитель делает еще одно важное дело. Он помогает… поднять температуру плазмы. Да, да, холодная вода заставляет плазму разогреваться сильнее. Парадокс?

Нет!

Струя воды, попав в камеру, охлаждает не только ее стенки, но и внешние слои плазменного шнура. От этого ионов в этой части плазмы становится меньше и наружные слои начинают хуже пропускать ток.

Разрядный ток поэтому концентрируется, в основном, в центральной, более горячей части плазмы. Частота столкновения частиц газа, а значит, и температура плазмы в «сердцевине» увеличивается.

Происходит так называемое первое термическое сужение. Но это не все: за первым термическим сужением наступает второе.

Еще Фарадей заметил, что два проводника с током притягиваются друг к другу, если ток в них течет в одну и ту же сторону. Причина — взаимодействие магнитных полей, окружающих каждый проводник.

Движущиеся электрические заряды в тонком шнуре дуги можно представить как большое количество проводников с током. Когда произошло первое термическое сужение, эти «проводники» оказались тесно прижатыми друг к другу. Явление, открытое Фарадеем, сказывается на них теперь более заметно — шнур плазмы сжимается еще больше. А это ведет к новому прыжку температуры.

Электромагнитные силы, возникающие в разрядной камере, выталкивают плазму подобно тому, как водяной насос пожарной машины выбрасывает сильную струю воды из брандспойта.

Теперь можно заставить эту струю плазмы работать.

А дел для нее есть немало.

Мы уже говорили о кислородно-дуговой резке металлов. При этом способе дуга нагревает докрасна металл, а струя кислорода, окисляя, режет его.

Оказывается, плазменный брандспойт лучше справляется с такой работой. Температура струи плазмы столь высока, что ни предварительного нагрева металла, ни запаса кислорода не нужно. Сталь сама мгновенно плавится, легко уступает натиску плазмы. Огненный нож струи плазмы проходит через металл так же легко, как стальной нож через масло.

В современной технике широко применяются всевозможные жароупорные материалы. Они названы так потому, что стойко выдерживают натиск тепла. Поэтому обработка их — дело хлопотливое и трудоемкое.

Использование струи плазмы позволяет производить ее значительно быстрее.

А керамика? До последнего времени готовые изделия из керамики не удавалось плавить. В струе плазмы легко плавится и керамика. Это позволяет отливать из нее резцы, получать сплавы керамики с металлами, изготовлять детали, необходимые и химикам, и металлургам, и машиностроителям.

Каждый школьник знает, как «разлучить» воду и растворенные в ней соли. Нужно нагреть воду и испарять ее до тех пор, пока на дне не останется одна соль.

Струя плазмы может успешно выступать в роли такого испарителя. Нагревая и испаряя любые материалы, можно по очереди отделять одни их составные части от других. Если направить струю плазмы на куски руды, то нетрудно будет выделить из нее какой-либо редкий металл и получить его в чистом виде.

Плазмохимия — так можно назвать это применение плазмы — исключительно перспективная отрасль техники. Сейчас она делает первые шаги.

А теперь посмотрим, как еще в технике используется струя плазмы.

На рисунке вы видите разрез так называемого аэродинамического тоннеля.

Словно смерч врывается в него струя плазмы. Расширяясь и непрерывно набирая скорость, она способна смести все на своем пути. В узком месте тоннеля скорость раскаленной плазмы может превысить скорость звука даже в десять — двадцать раз!

Подставляя этому потоку модели самолетов и ракет, можно испытать их на прочность.



Современные ракеты при своем движении выбрасывают огромное количество плазмы. Как себя чувствуют ракеты при отрыве от Земли или во время космических полетов — важнейший вопрос ракетной техники.

Установки, подобные аэродинамическому тоннелю, позволяют досконально изучить этот вопрос, причем, как видите, отпадает необходимость поднимать ракету в воздух.

Не так давно в иностранной печати появилось описание одной оригинальной аэродинамической трубы, в которой главную роль тоже играет плазма. Эту трубу построила известная американская фирма «Боинг» в Сиэтле.

Плазма возникает в небольшой камере после разряда гигантской батареи, состоящей из четырех тысяч конденсаторов. Разрядная камера отделена от аэродинамической трубы пластмассовой перегородкой.

Перед «взрывом» мощный насос нагнетает в камеру воздух до давления ста сорока атмосфер, а из аэродинамической трубы другой насос откачивает воздух совсем.

Когда батарея конденсаторов зарядится до шести тысяч вольт, напряжение от нее подается на электроды и внутри камеры происходит разряд, похожий по своему действию на взрыв. Тридцать миллионов киловатт — такая мощность за короткое мгновение освобождается в камере. Возникшая при этом плазма имеет очень высокую температуру — четырнадцать тысяч градусов!

Огненный вихрь, сломав пластмассовую перегородку, врывается в аэродинамическую трубу и разгоняется до скорости, в двадцать семь раз большей скорости звука. И хотя это происходит в течение лишь одной двадцать пятой доли секунды, точные приборы добросовестно запишут, как ведут себя разные детали макета самолета или ракеты.

В нашей стране подобным исследованиям также уделяется большое внимание.

Созданные в СССР аэродинамические трубы отвечают всем требованиям современной техники.

Глава VII

Искра-труженица

Медь тверже стали? Возможно ли? Действительно, достаточно припомнить, как стальным зубилом вырубают отверстие в медной пластинке, чтобы не сомневаться, какой из названных двух металлов тверже.

Но героиней нашей книжки является плазма, и вы не ошибетесь, если предположите, что именно она может перевернуть все вверх дном, сделать одни тела податливыми, как воск, а другие — твердыми, как кремень.

Когда нужно обработать какую-либо деталь, главным является вопрос об инструменте. В схватке с металлом инструмент должен выйти победителем. А это может быть в том случае, если он значительно тверже обрабатываемой детали.

Много лет делали сверла, резцы, фрезы из стали, и она прекрасно справлялась с порученной работой. Но вот появились очень прочные сплавы, и прославленная сталь начала сдавать. Инструмент быстро изнашивался, а то и совсем выходил из строя, плавился или ломался. Придумали очень твердую керамику, но и она не всегда выходила победительницей в борьбе с металлом.

Тогда обратились к плазме.

Два советских ученых — супруги Б. Р. и Н. И. Лазаренко — трудились над важной проблемой: как увеличить долговечность контактов, разъедаемых искрой при включении и выключении тока.

Поместив контакты в жидкое техническое масло, ученые заметили, что оно мутнеет. «Наверно, пригорает масло», — решили они, хорошо зная, что попрыгунья-искра может быть прекрасным «химиком».

Но когда муть появилась в чистой воде, исследователи задумались: откуда она взялась? Какого она происхождения? И еще: каковы ее свойства?

К воде, налитой в стеклянную банку, поднесли магнит. Мутное облачко притянулось к магниту. «Все ясно, — решили ученые, — в воде оказались осколки железных контактов, „брызги“, разлетавшиеся после каждого удара искры. Значит, можно, используя это явление, получать металлические порошки». И они стали конструировать «искровую мельницу». Во время опытов исследователи заметили, что металлическая пудра отделяется от контакта, соединенного с положительным зажимом источника тока. Значит, пластинку, предназначенную для переработки в «пудру», следует соединить с плюсом. Известно было также, что именно искра разрушает металл. Значит, рассуждали изобретатели, второй электрод нужно сделать острым, с него будут прыгать искры при значительно меньшем напряжении.