Добавить в цитаты Настройки чтения

Страница 5 из 52



Мало того. С повышением чистоты веществ менялись и химические их свойства. Угарный газ не горел в кислороде. Водород не соединялся с хлором, гремучий газ не взрывался, нашатырь не распадался, как обычно при возгонке, на аммиак и хлористый водород. Вот что наделала простая операция — высушивание реагентов!

Это выглядело потрясающе. Впрочем, судите сами. Точные науки немыслимы без измерений. Но любые измерения — это сравнение с эталоном. Например, ртуть служит образцом при определении стандартной единицы электрического сопротивления. Удлинение столбика ртути в термометре отмечает повышение температуры. Ртуть работает и в манометрах. Во всех этих случаях мы опираемся на постоянство свойств чистого эталона. Только вот беда: они, оказывается, не остаются неизменными! Например, девятилетняя сушка приводит к тому, что у ртути температура кипения повышается на 62 градуса. 62 градуса! Наверняка и прочие свойства нашего жидкого металла зависят от степени очистки. В том числе электропроводность, удельный вес и способность расширяться при нагревании.

Фундаментальнейшие физические константы оказались в полной зависимости от чистоты веществ. Иными словами, от того, насколько близко удалось придвинуться к загадочному химическому индивиду.

И это еще не все!

Вот уравнение реакции: 2H2 + O2 = 2H2O. Все химические знаки написаны безошибочно. Тем не менее перед нами фикция! По крайней мере идеализация.

Единой химической формулой можно изобразить состав лишь идеально чистого вещества. Между тем высушенные до предела водород и кислород не взаимодействуют. Выходит, чтобы реакция пошла, нужны примеси. Но тогда их участие в процессе придется описывать дополнительно еще одним уравнением! Каким? Очевидно, тем, которое показывает участие загрязнений во взаимоотношениях между химическими индивидами.

Вот и получается, что первоначальное уравнение не отражает всей сложности описываемого им явления. И все же без языка формул и уравнений немыслим прогресс химии.

Композитор записывает новорожденную мелодию нотами: «до», «ре», «ми», «фа», «соль» и так далее. Однако реальные звуки, соответствующие этим нотам, никогда не бывают чистыми. Извлекаемые ли из инструментов, рожденные ли голосовым аппаратом, они всегда сопровождаются примесями обертонов. Звуки чистые, без обертонов, — явление столь же исключительное, как и химический индивид. Однако не будь нотной азбуки, что сталось бы с музыкальным творчеством?

Так, пожалуй, и в химии. Именно введению символов в лабораторный обиход во многом обязана своими успехами теоретическая химия. Да и не одна теоретическая (вспомните хотя бы органический синтез!). Только очень скоро выяснилось, что химические формулы дают идеализированное представление о составе соединений и о характере взаимодействий.

Так закон постоянных и кратных отношений породил проблему химического индивида.

Мысленно представить себе, что такое химический индивид, сравнительно легко. Вещество, составленное из одинаковых атомов или молекул. Результат простой арифметической операции: чистое вещество равно грязное вещество минус примеси. Мед, из которого удален деготь и который разделен на индивидуальные органические соединении. Но это теоретически. А вот экспериментально…

Химикам так хотелось взглянуть хотя бы одним глазком, что же это за штука — химический индивид. Ведь его до сих пор никто не видел. Он существовал лишь в воображении ученых. Даже Пруст в своих тщательнейших анализах имел дело с веществами, которые никак не назовешь абсолютно чистыми. Правда, степень их загрязненности была ничтожной. Но ведь химический индивид — это стопроцентная чистота! Ни одной чужеродной молекулы.

Бурно совершенствовались способы разделения смесей и очистки веществ. А химический индивид оставался по-прежнему недосягаемым идеалом. Этаким призраком в реторте. Но самое главное — трудно было установить: пойман, наконец, призрак или нет?



Очистить вещество — титанический труд. Однако это всего лишь полдела. Надо еще проконтролировать степень чистоты. Определить, какие примеси и в каких количествах затаились где-нибудь в потаенных уголках исследуемого препарата. Вот тут и начинаются утомительные и рискованные аналитические процедуры. Рискованные потому, что очищенное вещество очень легко загрязнить снова.

Известен случай, когда у одного ученого в анализируемых пробах обнаружилось золото. Его было очень немного, но у аналитиков совсем иное мнение на этот счет. Ничтожнейшие примеси порой сводят на нет усилия целого коллектива. Но откуда взялось золото? Вроде бы времена алхимии безвозвратно канули в прошлое. Долго выискивали причину. Оказалось, следы металла были занесены в колбу самим экспериментатором! А все потому, что ученый во время опыта машинально поправлял очки в золотом оправе.

Металлические зубы, кольца, маникюрный лак, губная помада, запах духов — все это далеко не безобидные гости в аналитической лаборатории. Недопустимо, например, определять малые количества цинка, если на руки нанесен парфюмерный крем. Он содержит окись цинка.

Вопреки общепринятому представлению о взаимоотношениях между человеком и химикалиями здесь приходится оберегать химические препараты от человека, а не наоборот.

Посуда, самая что ни на есть чистейшая, как, впрочем, и любая аппаратура, тоже способна служить источником загрязнений. И чем чище препарат, тем он привередливее. Там, где имеют дело с особо чистыми продуктами, на учете каждая пылинка. Считается совершенно недопустимым, когда на 10 квадратных сантиметров рабочей поверхности (площадь большой почтовой марки!) приходятся две пылинки за шесть часов. И пылинка не должна быть по размерам больше 0,005 миллиметра! Уместно напомнить, что в одном стакане лондонского воздуха больше пылинок, чем жителей во всей британской столице.

Короче говоря, чистилище препаративной химии оказалось бессильным обратить «нечистых» в «чистых». Химический индивид не поддавался ни на какие ухищрения охотников за сверхчистыми. Но тем больше распалял он воображение химиков. Его свойства не давали им покоя. Неужели невидимка неуловим? Но даже если это и так, то разве нельзя найти косвенные методы изучения его свойств?

Поиск продолжался.

Тем временем все более пристальное внимание охотников за чистотой стала привлекать… грязь. Да, грязь — те самые зловредные примеси, которые попортили так много крови искателям химического индивида.

Металлурги давно уже заметили, что примеси серы или фосфора, даже незначительные, что-нибудь около 0,1–0,05 процента, сильно меняли свойства стали, делали ее ломкой, хрупкой. Некоторые загрязнения, наоборот, действовали на металл благотворно. Известно, что проволока сечением 1 квадратный миллиметр, изготовленная из очень чистого железа, выдерживает груз в 20 килограммов. А вот стальная нить той же толщины — в 10, а то и в 20 раз прочнее!

Сталь не что иное, как загрязненное железо. В ней от 0,2 до 1,7 процента углерода. Если углерода больше — перед нами чугун, если меньше — ковкое железо. Не стоит, пожалуй, объяснять, что такое ковкость. Важно лишь отметить, что от этого свойства не остается и следа при переходе от железа к чугуну. Чугун вовсе не уличишь в мягкотелости железа. Между тем разница ничтожна — какие-нибудь полтора процента углерода!

А сталь? Упругая, твердая, прочная, она куда менее податлива под ударами молота или штампа. Однако, не обладая ковкостью железа, она не страдает и хрупкостью чугуна. Какое несходство в механических свойствах! И все на коротенькой дистанции — от десятых долей до нескольких процентов углерода. Откуда такие скачки? Какова роль углерода и прочих примесей?

Отнюдь не праздное любопытство двигало рукой ученых, настраивавших все новые приборы для исследования металлической структуры. Век стали поднимался над планетой в грохоте созидания и разрушения. Сверкающие колеи железных дорог перерезали континенты. Над свинцовой рябью рек нависали ажурные фермы мостов. Паутина проводов опутывала небо. Острые кили могучих кораблей рассекали океанские воды. Грузные стволы орудий зловеще поглядывали своими жерлами в лицо врагу. Всюду был нужен металл, металл. И не просто металл. Металлу требовалось придать особые качества, чтобы он, буде ему придется сокрушать или строить, работал безотказно. Упругость, твердость, тягучесть, жаропрочность, электропроводность, кислотоупорность — сколько разных потребностей выдвигала практика!