Добавить в цитаты Настройки чтения

Страница 47 из 52

Нет. Не идут. Хотя, быть может, вдыхаемый нами кислород поглощается и не без участия свободных радикалов. Если, конечно, так можно назвать промежуточные вещества, переносящие один электрон в сложном процессе окисления глюкозы. Любопытно, что зеленый лист, облученный светом, дает характерный спектр ЭПР. Но ведь фотосинтез — это процесс, обратный сгоранию глюкозы в наших клетках! И все же одноэлектронный перенос заряда не имеет ничего общего с типичной цепной реакцией. В этом немалая заслуга витаминов E и C. Первый защищает жировую ткань, второй — водную среду организма от разрушительного действия возможных окислительных цепных реакций.

Между тем образование настоящих свободных радикалов в человеческом организме вполне реально. Так происходит, например, при радиоактивном облучении. Это не значит, разумеется, что человек вспыхивает как спичка. Но цепные процессы могут привести к серьезным расстройствам в нормальной деятельности клеток. Недаром ученые заняты поисками ингибиторов (так называются отрицательные катализаторы, тормозящие ход нежелательных химических процессов). В технике уже получили широкое применение антиокислители и консерванты: их добавляют к смазкам, пластмассам, топливам, медикаментам и пищевым продуктам.

Математический анализ раковой опухоли. Кощунство? Нет, гуманность!

Как это ни странно, цепные реакции имеют непосредственное отношение к проблеме рака. Конечно, пока это лишь гипотеза. Но весьма правдоподобная. Она высказана одним из создателей теории горения — членом-корреспондентом АН СССР Эмануэлем. Вот что рассказал автору этих строк Николай Маркович:

— Механизм превращения нормальных клеток в опухолевые? Вот уже много лет подряд мы исследуем его с позиций учения о химической кинетике. Среди разных причин, вызывающих страшный недуг, наше внимание привлекают свободные радикалы. Они образуются в клетке под действием радиации. Канцерогенность, то есть способность возбуждать рак, свойственна и химическим соединениям. Например, бензпиренам, содержащимся в выхлопных газах автомобилей, в табачном дыме. Попав через легкие в организм, канцерогены приводят к образованию свободных радикалов. А те повреждают белки, ферменты, нуклеиновые кислоты. Они покушаются и на ингибиторы-антиокислители (в частности, некоторые витамины), содержащиеся в клетке. Такое варварство не проходит бесследно. Клетки начинают безудержно размножаться. Если это так, то естественно ожидать, что картину прогрессирующей злокачественной опухоли можно описать уравнениями химической кинетики. И вот оказалось, что развитие экспериментального лейкоза у мышей действительно подвластно строгим математическим закономерностям!

Онкологам давно известно, что привить опухоль от больного зверька здоровому не удается, если взято слишком мало клеток. Нужно вполне определенное их количество, чтобы началась болезнь. Подобные явления получили название «пороговых». Мы рассмотрели их в кинетическом аспекте. Обнаружилось, что переход от невосприимчивости к заболеванию при постепенном увеличении числа клеток имеет скачкообразный характер. Это напоминает критические явления в цепных реакциях, когда незначительное изменение условий вызывает внезапный скачок: только что процесс протекал с едва заметной скоростью, и вдруг — взрыв!

Николай Маркович показывает график. На нем плавные кривые. Они поначалу идут полого, почти горизонтально, а затем круто взбегают кверху. Да, именно так, лавинообразно, развивается во времени цепной процесс. Вот уж никто бы не подумал, что даже сугубо биологические явления в руках химика приобретут математическую четкость!

А в самой химии? А какой мере поддается математическому анализу огромное разнообразие явлений — от спокойной, размеренной вереницы взаимодействий в сохнущей краске до стремительного фейерверка цепных процессов при взрыве?

В 1907 году известный русский математик Андрей Андреевич Марков заложил основы теории, которая впоследствии стала незаменимым инструментом исследований в химии. Впрочем, не только в химии. В радиотехнике, метеорологии, биологии — в любых отраслях науки и техники успешно используются вероятностные построения, известные под названием «цепей Маркова».





Наиболее рациональное обслуживание больных на медпункте аэродрома… Автоматическое распределение нагрузок в большой энергосети… Размножение и гибель раковых клеток… Диффузионное разделение урановых изотопов… Трудно поверить, что столь несхожие явления можно привести к одному знаменателю. Но это так. Перед нами знаменитые марковские процессы. Их теория славится хорошо разработанным математическим аппаратом. Он сводится к дифференциальным и интегральным уравнениям. Тяжелая математическая артиллерия бьет без промаха, допуская строгий теоретико-вероятностный анализ случайных процессов.

Любой процесс из целого калейдоскопа окружающих нас ситуаций может быть сведен к одному из двух типов: либо к марковскому, либо к стационарному. Процессы первого типа развиваются во времени так, что состояние в следующий момент у них иное, чем в предыдущий. Пример: взрыв. И он строго описывается разделом математики, который так и называется: теория ветвящихся случайных процессов. Процессы второго типа не зависят от бега времени. Это установившиеся системы, подобные заводскому реактору, работающему в стабильном технологическом режиме.

Заводской реакторТак это же и есть конечная цель химического моделирования! Как ее достигнуть?

Мы узнали, что химики умеют проникнуть в любые тайны пробирки. Что они могут описать кинетику любого процесса подходящими математическими уравнениями. Но они не в силах перейти сразу же от лабораторной колбы к заводскому аппарату. Не работает теория подобия, по которой авиаконструкторы рассчитывают самолеты. Почему же так?

Химический реактор и впрямь чем-то напоминает самолет. Внутри обоих поддерживаются неизменными температура и давление. Оба рассчитаны на определенную пропускную способность. Только у одного — молекулы, у другого — пассажиры. Чем больше размеры того и другого, тем выше производительность. Полезный «выход» зависит от скорости. Правда, реактор в отличие от самолета стоит на месте. Но существенной разницы здесь нет. Через оба аппарата — летательный и химический — идет поток индивидов. В одном случае биологических, в другом — химических.

Оба потока подвержены случайностям. Но и тот и другой поддаются теоретико-вероятностному анализу. А вот поди ж ты…

Различие начинается в тот момент, когда мы вспомним, что конструкция самолета зависит от свойств внешней среды, а не содержимого, как у реактора. Летательный аппарат — герметичный обтекаемый ящик, рассчитанный на внешние нагрузки, на взаимодействие с течениями воздушного океана. Содержимое этого ящика заботит конструкторов в меньшей степени. В конце концов какая разница, кого или что будет транспортировать воздушный лайнер? Люди, письма, газеты, продовольственные или промышленные товары — все одно какой груз. От его вида не зависят главные требования к конструкции самолета. Сила тяги, скорость, прочность, долговечность, грузоподъемность — все упирается прежде всего в аэродинамические качества машины. Иными словами, в то, насколько хорошо подогнаны формы самолета к непрерывному напору стремительного встречного ветра. А это соотношение между потоком воздуха и формой самолета почти не зависит от масштабов эксперимента.

Иное дело химический аппарат. В нем вид оболочки зависит прежде всего от характера содержимого. Клокочущего, бурлящего, пышущего жаром, распирающего что есть силы внутренности труб и котлов. Снаружи здесь такая же спокойная и комфортабельная обстановка, как и в салоне «ТУ-104». Зато внутри… Именно там непрерывный поток, а не снаружи, как у самолета. Правда, поток установившийся, как и за бортом воздушного корабля. Стационарный режим, который поддается математическому анализу. Но тут-то и кончается последняя капелька сходства.