Добавить в цитаты Настройки чтения

Страница 25 из 52

И туман и айсберг — вода. Молекулы воды объединяются в капельки благодаря силам межмолекулярного сцепления. И лед плавает поверх воды неспроста — здесь тоже действуют непреложные физические законы. Какие же?

Опять-таки межмолекулярное взаимодействие!

Плотность у воды выше, чем у льда. Это долго оставалось загадкой. И лишь представления квантовой физики рассеяли сомнение ученых.

Между молекулами воды возникают водородные связи-мостики. Каждый атом водорода, входящий в состав H2O, — «слуга двух господ». Он связан не только с атомом кислорода своей собственной молекулы (внутримолекулярное взаимодействие). Его властно притягивает и «чужой» кислородный атом — тот, что в соседней молекуле (межмолекулярное взаимодействие). Так возникает сетчатая пространственная структура.

Замерзание воды — это изменение ажурной сетки из водородных мостиков. Рыхлая структура становится механически более прочной. Но молекулы в ней упакованы менее плотно. Потому-то айсберги и плавают по морям. Нагревание «встряхивает» жесткую структуру льда. В пустоты между узлами кристаллической решетки льда попадает все больше молекул воды. «Кружево» становится мягче, зато плотнее, а «дырки» в нем — меньше. Когда же вода испаряется, «кружево» расползается.

Образованию водородного мостика способствует опять-таки донорно-акцепторное взаимодействие. Обычно атом водорода предоставляет электронам второго «хозяина» свою свободную «жилплощадь».

Благодаря водородной связи многие молекулы соединяются в димеры и полимеры. Газообразный фтористый водород образует кольца, отдаленно напоминающие бензол (H6F6). Поперечные мостики между нейтральными молекулами могут появиться и в спиртах, и в органических кислотах, и в белках, жирах, углеводах. Стоит ли продолжать? И без того ясно: взаимоотношения между нейтральными молекулами зачастую сопряжены с чисто химическими связями.

Где-то тут, наверное, пройдет и тот заветный Рубикон, который отделяет живое от неживого.

Межмолекулярные взаимоотношения… Не здесь ли надо искать ключ к знаменитой загадке неаддитивности: почему свойства клетки — не просто сумма свойств составляющих ее молекул? Ведь клеточные структуры существуют не сами по себе. Их окружает водная среда. Они общаются и друг с другом.

Вы никогда не задумывались над вопросом: почему склеивание, паяние или сварка способны скрепить самые несхожие материалы? Почему капля, прежде чем сорваться с зонтика, некоторое время висит на краю вашей матерчатой крыши, а с перьев водоплавающей птицы стекает, как с гуся вода? Почему масляные краски не отваливаются от холста?

И здесь не обошлось без вмешательства межмолекулярных сил!

Прочность материалов обусловлена также сцеплением молекул. Треснула ли бетонная стена, разорвался ли капроновый чулок, лопнул ли мыльный пузырь — значит, не выдюжили силы межмолекулярного взаимодействия. Они огромны, эти силы. Нить из лавсана сечением в один квадратный миллиметр выдерживает человека. А стеклянное волокно позволяет доводить нагрузку до 300 килограммов на каждый квадратный миллиметр!

А внутримолекулярное взаимодействие? Сильнее оно или слабее? Ну, разумеется, сильнее: иначе мир был бы ввергнут в пучину хаоса. Представляете, что бы получилось, если бы мы поставили чайник на огонь, а у нас вместо струйки пара повалил кислород и водород? Отрывающиеся от поверхности молекулы воды раздирали бы на части друг друга, рвались бы химические связи. Нельзя было бы ни купаться, ни просто умываться без опасения, что вместе с капельками, приставшими к коже, мы стряхнем осколки органических молекул, из которых состоит наше тело.

Да, внутримолекулярные силы в десятки раз превышают межмолекулярные. Теплота, которая требуется для разделения всех молекул в наперстке воды, составляет около одной килокалории. А для разделения того же количества H2O на атомы O и H надо не менее семи. Причем здесь не учтены тепловые затраты на нагревание до температуры разложения!

Каким же образом тепло разрушает валентные связи? И тепло ли?

Во время Международного геофизического года у нас вышел в свет сборник переводов «Планета Земля». Один из авторов — американский геофизик Дж. П. Койпер строил в своей статье догадки: что-то будет с нашей планетой через миллиарды лет?





Сейчас три четверти земной поверхности покрыты водой. Для космического наблюдателя то, что мы называем «планетой Земля», выглядит скорее как «планета Вода». Но у «планеты Вода» есть реальные шансы превратиться в настоящую, без всяких оговорок, «планету Земля»!

Представьте себе гигантские океанические бассейны, утратившие миллиарды тонн воды; небо без единого облачка над бесплодными континентами; иссякшие родники и высохшие русла рек, словно шрамы, пересекающие скорбный лик Земли; огромные облака всепроникающей пыли, окутывающей планету удушливым покрывалом; наконец, знойное днем и леденящее ночью дыхание ветра. Печальная обитель смерти и опустошения, мало похожая на нашу зеленую и нарядную планету…

Может ли так быть на самом деле? Судите сами.

Оказывается, причиной катастрофы может стать расщепление молекул воды. Да, именно такой процесс протекает в верхних слоях земной атмосферы.

Ультрафиолетовые лучи Солнца. Невесомые, незримые, электромагнитные волны! А действуют на молекулы, как удар молотка. И, словно искры от удара, по сторонам сыплются осколки. Идет фотолиз воды: H2O = H + OH. Более тяжелый гидроксил остается в атмосфере. А водород ускользает в космос. Так печально кончают свое существование водяные пары, поднявшиеся в заоблачные выси из рек и морей. Земной океан мелеет.

Успокоим впечатлительного читателя: «усушка» планеты за всю ее геологическую историю была настолько мизерна в глобальных масштабах, что ее не стоит опасаться многие миллиарды лет.

Это рассказано вовсе не для того, чтобы лишний раз напомнить: вот-де как важно изучать химическую связь методами квантовой механики! Мол, пустячная с виду реакция — расщепление воды, — а имеет грандиозное, так сказать космическое, значение!

Нет, нас сейчас интересует другое. Каким образом световые лучи разрывают валентную связь?

Молекула водорода напоминает гантельку. Атомы-шары скреплены упругой «пружиной» — валентной связью. Шары то растягивают, то сжимают пружину. C повышением температуры амплитуда колебаний растет. В какой-то момент пружина лопается. Происходит диссоциация. Но почему все-таки лопается? Что ее понуждает к этому?

Кванты лучистой энергии. К ним особенно чувствительны электроны. Еще бы: ведь электрон — тоже волна! Атомные ядра весьма восприимчивы к бомбардировке квантами. Да и сама молекула в целом.

Поглощенная веществом энергия солнечных лучей распределяется далеко не поровну. На вращение молекулы расходуется немного. Не более одной килокалории на каждую грамм-молекулу вещества. На усиление колебательного движения атомов идет несколько больше — от 1,5 до 6 килокалорий. Но все это вместе взятое в десятки раз меньше энергии, поглощаемой электронами!

Конечно, разным электронам требуется и разная энергия. Если они движутся во внутренних частях атома, для их возбуждения нужны тысячи и даже миллионы килокалорий. Такой энергией обладают рентгеновы лучи.

А их почти нет в составе солнечного спектра. Менее мощны фотоны ультрафиолетовой радиации. Они могут дать сотню-другую килокалорий на грамм-молекулу вещества. Конечно, этого недостаточно, чтобы расшатать устойчивую электронную конфигурацию внутренних оболочек молекулы. Зато наружные электроны весьма чувствительны к облучению ультрафиолетом.

Ощутив толчок, электрон возбуждается и перепрыгивает на более высокую оболочку-орбиту. Он может через некоторое время возвратиться, высветив то же количество энергии, которое получил. Такие прыжки туда и обратно происходят все время, пока мы освещаем какое-нибудь вещество. Именно поглощение света является причиной окраски химического соединения. Если вещество бесцветно, значит оно испускает не воспринимаемый глазом ультрафиолетовый или инфракрасный свет.