Добавить в цитаты Настройки чтения

Страница 5 из 7

Североатлантическое колебание является одной из важнейших характеристик крупномасштабной циркуляции атмосферы в северном полушарии. Оно выражено во все сезоны года и проявляется в масштабах от нескольких суток до нескольких столетий. В многочисленных работах US CLIVAR (Climatic Variability and Predictability/Климатическая изменчивость и предсказуемость), показано влияние САК на основные гидрометеорологические поля в атлантико-европейском регионе.

Климатические колебания в Северном полушарии связаны с североатлантической осцилляцией, которая измеряется на 2-х станциях: одна станция находится на Канарских островах, другая – в Исландии. Измеряемые показатели качаются: то на одном возрастают, то на другом снижаются и наоборот. Сам Гольфстрим тоже то разгоняется, то замедляется, который обогревает Европу. Но были случаи, когда Гольфстрим прекращал двигаться, 10 000 – 11 000 лет назад, когда прекращалось таяние ледников в последнем, сартанском периоде. Под канадским ледниковым щитом существовало озеро, которое называлось по имени исследователя Агассис. Это было огромное озеро пресноводное озеро, которое в один момент выплеснулось в Атлантический океан и остудило его поверхность, и Гольфстрим не мог работать, не стало энергии, чтобы двигаться.

Существует и южная осцилляция, которую измеряют в Южном полушарии, оно контролирует Эль-Ниньо (отрицательные значения индекса) и Ла-Ниньо (положительные значения индекса). Важное значение в климатическом изменении играют стоковые ветры, которые формируются над ледниковыми шапками и стекают в разные стороны в область теплых морей.

Ветровые поверхностные течения, такие как Гольфстрим, перемещают воды из экваториальной части Атлантического океана к северу. Эти воды попутно охлаждаются и, в итоге, за счёт увеличившейся плотности, погружаются ко дну (формируя Североатлантическую глубинную водную массу). Плотные воды на глубинах перемещаются в сторону, противоположную направлению движения ветровых течений. Хотя бо́льшая их часть поднимается обратно к поверхности в районе Южного океана, самые “старые” из них (с транзитным временем около 1600 лет) поднимаются в северной части Тихого океана. Таким образом, между океанскими бассейнами существует постоянное перемешивание, которое уменьшает разницу между ними и объединяет океаны Земли в глобальную систему. Во время движения водные массы постоянно перемещают как энергию (в форме тепла), так и вещество (частицы, растворённые вещества и газы), поэтому термохалинная циркуляция существенно влияет на климат Земли.

1.5. Влияние парникового эффекта на климат

. Парниковый эффект – это повышение температуры нижних слоёв атмосферы за счёт того, что некоторые газы препятствуют излучению тепловой энергии с поверхности планеты в космическое пространство. Играет решающую роль в сохранении жизни на Земле – если бы парникового эффекта не было, температура была бы почти на 32-39 градусов ниже, чем сейчас. Земля находится в состоянии теплового равновесия. Средние годовые температуры земной поверхности и атмосферы в любой точке Земли мало меняются от года к году. Это означает, что на верхней границе атмосферы солнечная радиация уравновешивается излучением Земли. Но не всё излучение Земли уходит в космическое пространство. Его значительная часть поглощается находящимися в атмосфере водяным паром и парниковыми газами.

Парниковый эффект имеет место не только на Земле. К примеру, сильный парниковый эффект на соседней планете – Венере. Атмосфера Венеры почти целиком состоит из углекислого газа, и в результате поверхность планеты разогрета до 475°С. Климатологи полагают, что Земля избежала такой участи благодаря наличию на ней океанов. Океаны поглощают атмосферный углерод, и он накапливается в горных породах, таких как известняк. Посредством этого углекислый газ удаляется из атмосферы. На Венере нет океанов, и весь углекислый газ, который выбрасывают в атмосферу вулканы, там и остается. В результате на планете наблюдается неуправляемый парниковый эффект.

Парниковые газы – газообразные составляющие атмосферы природного, или антропогенного происхождения, которые поглощают и переизлучают инфракрасное излучение.

Явление естественного парникового эффекта позволяет поддерживать на поверхности Земли температуру, при которой стало возможным возникновение и развитие жизни. Это было обусловлено естественными изменениями климата в последние несколько миллионов лет. Физические процессы, из-за которых парниковые газы могут повысить температуру воздуха, известны с конца XIX в. Но до недавнего времени антропогенным парниковым газам придавалось мало значения. Антропогенное увеличение концентрации парниковых газов приводит к повышению температуры поверхности Земли, изменению климата и негативным геоэкологическим последствиям, рис. 1.7.





Рис. 1.7. Воздействие парникового эффекта на природные процессы и его геоэкологические последствия

Список парниковых газов, подлежащих ограничению, определен в Приложении А к Киотскому протоколу (подписан в Киото (Япония) в декабре 1997г. 159 государствами) и включает двуокись углерода (CO2), метан (CH4), закись азота (N2O), перфторуглероды (ПФУ), гидрофторуглероды (ГФУ) и гексафторид серы (SF6).

Очень обстоятельные исследования парникового эффекта были проведены в Национальном Центре атмосферных исследований (США). Они так оценили удельный вес газов в создании эффекта: водяной пар – 60%, углекислый газ – 26%, озон – 8%, метан – 6%. Дальнейшие исследования показали, что облака (водяного пара) усиливают парниковый эффект в нелинейной пропорции. Тогда доля водяного пара возрастает до 70%, а доля углекислого газа снижается до 22%. Водяной пар оказывает более сильное воздействие потому, что его в атмосфере значительно больше, чем углекислого газа и значимость углекислого газа для парникового эффекта во много раз ниже, чем это признано.

Водяной пар – самый распространенный парниковый газ – исключен из данного рассмотрения, так как нет данных о росте его концентрации в атмосфере (связанная с ним опасность не просматривается). В то же время, увеличение температуры Земли, вызванное другими факторами, увеличивает испарение и общую концентрацию водяного пара в атмосфере при практически постоянной относительной влажности, что, в свою очередь, повышает парниковый эффект. Таким образом, возникает некоторая положительная обратная связь. С другой стороны, повышение влажности способствует развитию облачного покрова, а облака в атмосфере отражают прямой солнечный свет, тем самым увеличивая альбедо Земли. Альбедо- характеристика отражательной (рассеивающей) способности поверхности земли. Повышенное альбедо приводит к антипарниковому эффекту, несколько уменьшая общее количество поступающего солнечного излучения и дневной прогрев атмосферы

Двуокись углерода (углекислый газ) (СО2). Источниками углекислого газа в атмосфере Земли являются вулканические выбросы, жизнедеятельность биосферы, деятельность человека. Примерно 65% антропогенных выбросов углекислого газа в атмосферу связано со сжиганием ископаемого топлива (нефти, газа, угля и др.) и 35%– с уменьшением его поглощения, вызванного освоением новых земель и массовой вырубкой лесов. При этом примерно 45% от общего количества выбросов углекислого газа остаётся в атмосфере, 30%– поглощается океаном, а остальная часть усваивается биосферой.

Некоторые промышленные процессы приводят к значительному выделению углекислоты (например, производство цемента). Основными потребителями углекислого газа являются растения, однако, в состоянии равновесия, большинство биоценозов за счет гниения биомассы производит приблизительно столько же углекислого газа, сколько и поглощает. Углекислый газ является "долго живущим" в атмосфере. Круговорот диоксида углерода представлен на рис. 1.8.

Оцениваемый эффективный период пребывания для СО2 колеблется в пределах от 50 до 200 лет.