Страница 9 из 15
Энергия биомассы связана с живыми и неживыми биологическими материалами, такими как растительная масса, абиотические деревья и сучья, скошенная трава и древесная щепа. Все это может быть использовано в качестве топлива для промышленного производства или для выработки электроэнергии[63].
Биотопливо давно рассматривается как реальный источник энергии[64]. В 1893 г. Рудольф Дизель, изобретатель дизельного двигателя, заметил: «Использование растительного масла в качестве топлива сегодня может показаться пустяком. Но со временем такие продукты могут стать столь же важными, как керосин и сегодняшние продукты перегонки каменноугольного дегтя»[65].
Сама по себе технология далеко не нова и может использоваться в качестве прямой замены ископаемому топливу. Хотя в целом производство неуклонно растет, колебания климата стран-производителей, условий сбора урожая и внешних экономических факторов, таких как цены на продовольствие и ископаемое топливо, могут препятствовать росту сектора. Доля биоэнергетики в общем мировом потреблении первичных энергоресурсов оставалась относительно стабильной с 2005 по 2017 г. и составляла около 10,5 %, несмотря на 21 %-й рост общего мирового спроса на энергию за последние 10 лет[66].
Хотя многие биоэнергетические технологии хорошо отработаны и полностью коммерциализированы, энергия биомассы страдает от многочисленных проблем с поставками и применением[67]. В настоящее время она может заменить лишь небольшую часть ископаемых видов топлива. Биоэнергетика используется в транспорте: биомассу добавляют в бензин в объеме не более 10 % от топливной смеси, а в дизельное топливо – не более 20 %[68]. В число ограничивающих факторов также входят транспортировка, строительство заводов и высокие эксплуатационные расходы.
Кроме того, производство и использование биотоплива вызывают вопросы о его воздействии на окружающую среду и влиянии на вырубку лесов, цены на продовольствие, воду и другие основные ресурсы. Например, производство этанола и других видов топлива на основе зерна напрямую конкурирует с такими сырьевыми товарами, как кукуруза, сокращая их предложение. Более того, режимы регулирования, стимулирующие производство биотоплива в различных странах, больше напоминают программы субсидирования, чем инновационные инкубаторы, направленные на расширение масштабов технологии. Влияние биотоплива на ряд секторов, таких как продовольствие, сельское хозяйство и окружающая среда, усложняет разработку стратегий и ограничивает развитие биотоплива как отрасли.
Биотопливо способно дать геополитические преимущества и преимущества в области энергетической безопасности тем государствам, что считают себя зависимыми от энергоносителей враждебных стран или государств – потенциальных конкурентов. Даже если производство и экспорт энергоносителей уже приводили к напряженности в отношениях (как в случае торгового спора между США и Бразилией по поводу биоэтанола)[69], биотопливо может напрямую обеспечить энергетическую безопасность и способствовать разнообразию энергетического баланса. Таким образом, биотопливо может служить как практическим решением конкретных проблем, так и политическим выбором, направленным на усиление геополитической мощи.
Стремление к использованию геотермальной энергии[70] демонстрирует проблемы современного технологического развития. Глубокозалегающие геотермальные энергетические мощности все еще находятся на ранних стадиях развития несмотря на то, что впервые они были опробованы в промышленных масштабах более века назад. Строительство и обслуживание геотермальной станции требует больших капитальных инвестиций и характеризуется недостаточной гибкостью в размещении, которое в основном сосредоточено на границах литосферных плит. В настоящее время США являются ведущим производителем геотермальной энергии, хотя существует большой потенциал роста в Восточной Африке, Центральной Америке и Азии.
Природные условия, такие как пар и горячие источники, а также продуктивность пласта влияют на количество скважин, которые необходимо пробурить для станции заданной мощности. Геотермальная энергия более дорогостоящая, чем ископаемое топливо и большинство других возобновляемых источников энергии, поскольку подходящие места обычно находятся далеко от энергетических рынков, что увеличивает затраты на транспортировку энергии.
Геотермальная энергия еще не достигла той стадии технологического развития, которая позволит ей конкурировать с ископаемыми видами топлива или даже с другими возобновляемыми источниками энергии. Такая перспектива представляется маловероятной в краткосрочной или среднесрочной перспективе. Кроме того, развитие геотермальной энергии может привести к тектоническим движениям и нанесению ущерба экологическим системам, что неизбежно будет сопровождаться увеличением прямых расходов и сопутствующих затрат.
В настоящее время проводятся масштабные исследования, которые позволят сделать геотермальное производство коммерчески конкурентоспособным. Например, инициатива FORGE, которая финансируется правительством США[71], сфокусирована на разработке и тестировании технологий для усовершенствованных геотермальных систем (enhanced geothermal systems, ESG). Подобные исследования проводились в Великобритании в таких регионах, как Корнуолл, и до недавнего времени считались не перспективными для подобных разработок[72]. В отличие от глубинных подземных геотермальных систем, поверхностные системы на основе теплообмена являются широко используемой технологией – Исландия почти все свое теплоснабжение получает от поверхностных геотермальных систем.
Потенциальная выгода от мегатренда альтернативной энергетики возрастает благодаря перспективе создания действительно «альтернативных» или даже фантастических источников энергии. Технологии, которые в настоящее время кажутся невероятными, такие как энергия приливов, волн, водорода, магнитного поля Земли и солнечная энергия с орбиты, которые могут быть разработаны в ходе развития мегатренда, способны изменить баланс глобальной энергетической безопасности. Для того чтобы эти технологии способствовали энергетической безопасности, их теоретические возможности следует поставить на рельсы практического применения.
Приливы и отливы возникают благодаря изменениям положения Луны относительно Земли и Земли внутри Солнечной системы. Приливы более предсказуемы, чем переменчивый ветер или энергия Солнца, которая зависит от уровня солнечного излучения и погодных условий. Самые первые случаи применения энергии приливов известны в Средние века, а согласно некоторым источникам, ее использовали еще в Древнем Риме. По словам писателя, изобретателя и футуриста Артура Чарльза Кларка, «довольно неуместно называть нашу планету “Земля”, когда очевидно, что она – “Океан”»[73]. Энергия приливов может вырабатываться тремя способами: с помощью приливного течения, с помощью запруд (низких плотин) и приливных лагун[74]. Энергия, вырабатываемая при помощи генераторов приливных потоков, в целом экологичнее и меньше воздействует на экосистему. Подобно ветряным турбинам, многие генераторы приливных потоков вращаются под водой благодаря движению глубинных вод.
63
CPV – это тип фотоэлектрической технологии, в которой используются линзы или изогнутые зеркала для фокусировки солнечного света на маленькие и высокоэффективные солнечные элементы.
64
Промышленная биомасса производится из таких растений, как мискантус, коммутационная трава, конопля, кукуруза, тополь, ива, сорго, сахарный тростник и различные виды деревьев от эвкалипта до пальмового дерева. Вид растения имеет большее значение для технологии переработки, чем для конечного продукта. Биотопливо на основе водорослей и этанол второго поколения (целлюлозный) должны открыть новые возможности, как только пройдут стадию пилотных проектов. Nancy Stauffer, Research Spotlight: Algae System Transforms Greenhouse Emissions into Fuel, The MIT Energy Research Council, 2006; http://web.mit.edu/erc/spotlights/alg-all.html (дата обращения: 05.12.2013).
65
К концу 2012 г. введено почти 83 ГВт энергетических мощностей на основе биомассы. REN21, Renewables 2013 Global Status Report, 27.
66
Rudolf Diesel, The Theory and Construction of a Rational Heat Engine (London: E & F. N. Spon, 1894), 9.
67
REN21, Renewables 2017 Global Status Report.
68
Среди проблем отсутствие промышленной цепочки для выращивания, сбора, переработки и использования биомассы. Кроме того, биоэтанол и биодизель менее эффективны в плане энергосодержания, чем нефтяное топливо.
69
Смесь биоэтанола в старых автомобилях вызывает коррозию внутренних поверхностей двигателя, таких как топливные рампы, и лишь небольшой процент современного автомобильного парка рассчитан на работу на топливе, в котором содержится более 10 % биоэтанола. В США, например, только 3 % автомобилей рассчитаны на использование топливных смесей. Подробнее см. International Energy Agency, Technology Brief T06–June 2010 (Paris: IEA, 2010). Источник: https://www.iea.org/publications/freepublications/publication/etp2010.pdf.
70
В течение многих лет США и Бразилия, два крупнейших в мире производителя этанола, враждовали из-за американских субсидий и тарифов. США ввели тариф на импорт этанола в размере 54 центов за галлон. Этот тариф был введен для защиты американских фермеров, которые не могли производить этанол так же дешево, как фермеры, выращивающие сахарный тростник в Бразилии. В январе 2012 г. правительство США разрешило прекратить 30-летнюю субсидию для американских производителей и отменило высокий тариф на импорт этанола. Этот прорыв побудил США и Бразилию к сотрудничеству в продвижении производства и потребления этанола, к лоббированию новых рынков в Африке и Латинской Америке, а также к единому мировому стандарту. См. Brian Winter, Insight: U.S. and Brazil – At Last, Friends on Ethanol, Reuters, September 14, 2012. Источник: http://www.reuters.com/article/2012/09/14/us-brazil-us-ethanol-idUSBRE88D19520120914 (дата обращения: 03.12.2013).
71
Геотермальная энергия использует тепло, выделяющееся при нагревании воды под землей горячими породами. Пар, который выделяется при бурении, питает электрогенераторы. Геотермальная энергия не страдает от прерывистости, что позволяет ей служить в качестве источника базовой нагрузки, когда будут устранены технологические препятствия для ее применения. Однако правильное сочетание проницаемых горных пород и сокрытой гидротермальной энергии встречается относительно редко. См. Ronald Dipippo, Ideal Thermal Efficiency for Geothermic Binary Plants, Geothermics 36, no. 3 (June 2007); The Future of Geothermal Energy – Impact of Enhanced Geothermal Systems (EGS) on the U.S. in the Twenty-First Century (Cambridge, MA: Massachusetts Institute of Technology, 2006). Источник: http://www1.eere.energy.gov/geothermal/pdfs/future_geo_energy.pdf.
72
См. сайт проекта www.forgeutah.com/.
73
https://www.cornwall.gov.uk/business/economic-development/geothermal/.
74
Цитируется в Nature 344, is. 6262 (March 1990): 102.