Добавить в цитаты Настройки чтения

Страница 6 из 18

Промежуточный итог: Ньютон не считал (и с тех пор никто, в общем, не считает), что законы природы могут описывать картину целиком. Кеплер со своими тремя абсолютно верными законами, в которых констатировалось поведение в целом, остался в прошлом. Законы Ньютона говорят, как причины (силы) определяют темп изменения количества движения. А дальше уж что получится путем «накопления», то получится – или на компьютере, или с помощью специальной математической процедуры. Если не удается ни то ни другое, то это наша проблема, а не проблема природы, в которой все «само себя суммирует» по мере того, как течет время: разнообразные причины постоянно действуют, накапливаемые изменения, в свою очередь, рождают новые причины, которые снова влияют, и так далее; время – это и есть способ упорядочения действующих причин и накапливающихся следствий.

Всеобщее притяжение. Причины изменений количества движения планет в Солнечной системе (и подоплека законов Кеплера) – притяжение. Это ключевой дополнительный постулат, без которого у Ньютона ничего бы не получилось. Все тела притягивают друг друга. Одни делают это сильнее, другие слабее. Мерой («гравитационным зарядом») является масса каждого тела – то, что мы обычно измеряем в килограммах. Никакие подробности касательно состава и других свойств тел не имеют значения. Странно, нет? Из всего многообразия свойств материи в данном случае важно только одно число[14].

Масса – гравитационный заряд

Гравитационные заряды одного знака притягиваются, а масса любого тела может быть только положительной; никакие тела поэтому не отталкиваются. Это делает гравитацию всепобеждающей: нет возможности «закрыть» положительный гравитационный заряд отрицательным и тем самым спрятаться от действия гравитации (нельзя «заземлиться», давая зарядам стечь туда, где они скомпенсируются противоположными). Гравитация слаба (см. добавления к этой прогулке), но неостановима. Гравитация убывает с расстоянием, но делает это не слишком быстро – как обычно говорят, «по закону обратных квадратов». Я никогда не понимал, почему здесь появляется множественное число: в законе тяготения присутствует всего один квадрат всего одной величины – расстояния R между двумя маленькими кусками материи (любой материи, как уже было сказано) массами M1 и M2. Сила притяжения между ними равна

Буква G здесь обозначает постоянную, которая, собственно, и выражает интенсивность гравитационного взаимодействия; это одна из Мировых постоянных – величин, встроенных куда-то глубоко в устройство нашей Вселенной. Численное значение этой постоянной – не предмет рассуждений, а экспериментальный факт. При всех «разумных» единицах измерения, выбранных для других входящих в формулу величин, постоянная G весьма мала, из-за этого гравитационное взаимодействие и оказывается таким слабым. Ньютон угадал формулу (1.1) (пришел к ней на основе ряда вспомогательных рассуждений), а многие тысячи раз ее использования с тех пор привели к впечатляющему прогрессу в познании мира[15]. Ньютонова теория тяготения позволяет делать отличные предсказания о движении притягивающих друг друга тел; она описывает и падение яблока, и движение Луны вокруг Земли. Лабораторией для систематических проверок ее предсказаний стала Солнечная система; мы увидим несколько ее триумфов на следующих прогулках.

Постепенно (сильно не сразу), впрочем, выяснилось, что приведенная формула хорошо работает, пока нет быстрых движений, а сама гравитация не адски сильная. В случае «быстрых» и «сильной» приходится довольно радикально менять взгляды на устройство тяготения (прогулка 6), но в Солнечной системе мы окружены «медленными» и «слабой», за одним-единственным астрономическим исключением: это движение планеты Меркурий вокруг Солнца, которое очень немного, но все же отличается от предсказанного по Ньютону (и которое у нас будет еще много поводов обсудить). Эти отличия свидетельствуют, что закон тяготения в форме (1.1) все же не является точным. Средства наблюдений, имевшиеся во времена Ньютона, не позволяли заметить отклонения в движении Меркурия, но у Ньютона были независимые основания для некоторого беспокойства за свой закон тяготения, исходя из того, что мы сейчас бы назвали проблемой передачи информации. Предположим, что Солнце по какой-либо причине внезапно начинает двигаться с ускорением в направлении какой-нибудь выбранной звезды. (Реализовать такое крайне непросто, но это не запрещено законами природы, а физические законы должны корректно описывать явления вне зависимости от того, в людских ли силах эти явления осуществить.) Спрашивается, как скоро Земля почувствует изменения в силе притяжения со стороны Солнца? Каким образом Земле передастся информация о том, где Солнце? Проблема с законом тяготения в виде формулы (1.1) в том, что если продолжить применять ее «как написано» (а что еще делать?!) и в этом гипотетическом случае, то мы вынуждены будем заключить, что изменения силы притяжения передаются к Земле (и вообще куда угодно) мгновенно. Это называется «действие на расстоянии»: эффект мгновенно передается через пустоту. Действие на расстоянии определенно не нравилось Ньютону:

Тот факт, что гравитация должна быть внутренним, существенным образом присуща материи так, чтобы одно тело воздействовало на другое на расстоянии через пустоту без посредничества чего бы то ни было еще, способного передавать воздействие или силу от одного тела к другому, представляется мне таким колоссальным абсурдом, что, как я полагаю, никто со сколько-нибудь развитым пониманием философских вопросов в него не впадет. Гравитация должна вызываться каким-либо агентом, действующим постоянно и в соответствии с определенными законами; но вопрос о том, быть этому Агенту материальным или нематериальным, я оставил на Усмотрение моих читателей[16].

Ньютон подозревал наличие Агента

Судя по этому фрагменту (который кажется мне гениальным из-за намека на совершенно неизвестную в то время форму материи – поле), Ньютон понимал, что отгаданный им закон не может быть последним словом в описании гравитации. Тем не менее ему пришлось постулировать закон природы, в котором говорится о силе гравитационного притяжения между двумя малыми кусками массы в зависимости от разделяющего их расстояния, но вообще ничего не сообщается о том, как гравитация распространяется через пространство – грубо говоря, как «движется» сама гравитация (в нашем изложении эта история тоже далеко впереди). Для всех тел Ньютон сформулировал закон движения, в котором ключевую роль играет изменение (количества движения) во времени, но в его законе гравитации не предусмотрена возможность какого-либо изменения гравитации во времени, потому что время вообще не участвует в формулировке этого закона (это статический закон). Ньютон не мог не видеть этого недостатка своей теории, но никаких данных, которые хотя бы отдаленно подсказывали, в каком направлении искать ответ, в то время не было. Hypotheses non fingo[17].

Уравнения движения. Закон природы «сила – это темп изменения количества движения» традиционно называется вторым законом Ньютона. Его еще часто называют уравнением движения или уравнениями движения. Вот как получается уравнение, например, для Марса. Солнце притягивает Марс с силой, которая зависит от расстояния между Марсом и Солнцем. Но оно-то и неизвестно, ведь задача как раз и состоит в том, чтобы узнать, как положение планеты зависит от времени. А как мы вообще применяем уравнения для решения задач? Мы делаем вид, что неизвестное нам известно, обозначаем его какой-нибудь буквой (например, но совершенно не обязательно, x) и стараемся переписать условие задачи, используя эту букву. В случае с Марсом мы поступаем точно так же, только буква кодирует не неизвестное нам число, а неизвестное нам поведение, т. е. функцию времени. (И таких букв/функций вообще-то три, когда движение происходит в трехмерном пространстве.) Условие задачи, которое надо использовать, чтобы составить уравнение, – это и есть второй закон Ньютона: мы совершаем с неизвестной функцией два разных действия, что дает две разные вещи, но их нужно приравнять. Во-первых, мы записываем выражение для силы; она зависит от расстояния, а потому и от искомого положения планеты по отношению к Солнцу. Во-вторых, мы берем темп изменения количества движения, в данном случае – темп изменения скорости планеты (умноженной на массу). Но сама скорость планеты – это темп изменения ее положения. Итак, мы выразили две разные величины через (пока неизвестное) положение планеты, изменяющееся со временем. Ньютон же говорит нам, что эти две разные величины равны друг другу. Все, что происходит в мире, происходит так, что они совпадают. Поэтому мы принимаемся за выяснение, как должно себя вести положение планеты в зависимости от времени, чтобы записанное равенство действительно было равенством. Это и выражают словами «решить уравнения движения».

14

Еще более странно, что одно и то же число – масса тела – измеряет два совершенно разных свойства: степень инертности и гравитационный заряд, но мы вынуждены отложить обсуждение этой загадки до одной из следующих прогулок.

15

Привычная для нас формулировка «закон всемирного тяготения» содержит неидеальный, с моей точки зрения, перевод слова universal (lex universalis, если с латыни). Лучше было бы говорить «всеобщего», но калька в виде «универсальный закон тяготения» была бы еще лучше, подчеркивая ключевую идею универсальности: в гравитационном взаимодействии участвуют все тела, причем универсальным образом, а именно вне зависимости от того, из чего они сделаны, и любых других особенностей.

16

Письмо Ньютона к Бентли, 1692 г.

17

«Гипотез же я не измышляю» (пер. А. Н. Крылова) – знаменитые слова из «Общего поучения» в финале «Математических начал натуральной философии». – Прим. ред.