Добавить в цитаты Настройки чтения

Страница 3 из 4

На этом Гис не остановился. В 1893 году он обнаружил мышечный пучок, который объединяет стенки предсердия и межжелудочковой перегородки. Позже его назвали пучком Гиса. Хоть исследователь и предполагал, что мышечный пучок проводит импульсы, заставляющие сердце сокращаться, он не провел никаких экспериментов, чтобы это доказать. А вскоре и вовсе оставил занятия эмбриологией, чтобы стать профессором внутренней медицины и директором клиники в Берлине.

Начался XX век, а загадка сердцебиения все еще не была разгадана. И кто знает, когда бы еще человечество разобралось с этим вопросом, если бы не японский патолог и физиолог Сунао Тавара (1873–1952) [10].

С середины XIX века правительство Японии – некогда изолированного от всего мира феодального государства – понемногу начало открывать границы, модернизировать производство и переосмыслять образование. В последнем вопросе японцы ориентировались в первую очередь на Германию: немецкие профессора приезжали преподавать в японские университеты, а японские студенты повалили в немецкие учебные заведения.

Одного из японских студентов, попавших на стажировку в Германию, звали Сунао Тавара. Еще студентом медицинского факультета Токийского университета он заинтересовался анатомией, так что в 1903 году Тавару отправили стажироваться в Институт патологической анатомии Людвига Ашоффа (который жил в 1866–1942 годах) [11]. Ашофф, уже вполне состоявшийся ученый, в то время особенно интересовался физиологией сердца, поэтому новый сотрудник почти с порога получил важное и трудное задание. Тавара должен был исследовать под микроскопом ткани 150 сердец, принадлежавших людям, погибшим от ревматического миокардита. Ему предстояло разобраться, как развивается воспаление мышц сердца при этой болезни. Тавара справился, обнаружив в мышцах сердца небольшие воспалительные участки, с появления которых начинался миокардит. Позже эти участки назвали тельцами Ашоффа.

Но самого Тавару миокардит не так уж интересовал. Он ставил себе более амбициозные задачи: стремился выяснить, зачем на самом деле нужны волокна Пуркинье и пучок Гиса и правда ли, что именно они проводят импульсы, заставляющие сокращаться сердечную мышцу.

Первая цель, которую поставил себе Тавара, – проследить, где заканчивается пучок Гиса. Задача была не из легких: японскому исследователю пришлось кропотливо исследовать под микроскопом тысячи тонких срезов сердца. Но ему было уже не привыкать – в конце концов, чтобы обнаружить тельца Ашоффа, тоже пришлось потрудиться.

В конце концов Тавара обнаружил, что пучок Гиса чем-то походит на дерево. Его «корень» начинается в похожем на узел скоплении клеток у основания перегородки, разделяющей предсердия – сегодня этот участок называют атриовентрикулярным узлом. Из этого узла, как из корня, вырастает «ствол», состоящий из пучка видоизмененных мышечных клеток, утративших способность сокращаться. Этот «ствол» заходит в перегородку, разделяющую желудочки, и делится там на две «ветви» – правую и левую ножки Гиса. Правая ножка заходит в правую стенку предсердия, а левая – в левую. Внутри стенок предсердий ножки Гиса делятся на более мелкие «ветки» – мышечные волокна. Тавара доказал, что это и есть волокна Пуркинье.

Но он не ограничился тем, что собрал в единую систему загадочные мышечные волокна. Тавара предположил – и оказался совершенно прав – что по «дереву» из мышечных волокон, составляющих пучок Гиса, распространяется электрический импульс, который заставляет сокращаться мышцы сердца по направлению от предсердий к желудочкам, как это в свое время показал Гаскелл.

Людвиг Ашофф высоко оценил работу ученика и добился, чтобы ее приняли к публикации. Так что оба исследователя – японский и немецкий – вошли в историю как отцы-основатели электрофизиологии.

И все бы хорошо, но оставался нерешенным один очень важный вопрос: а откуда, собственно, в сердце возникает тот самый электрический импульс, который затем бежит по пучку Гиса? Найти ответ смогли два британских исследователя: анатом и антрополог Артур Кейт (1866–1955) и студент-медик Мартин Флэк (1882–1931) [12, 13].

Артур Кейт заинтересовался анатомией еще во время учебы в медицинской школе при шотландском Университете Абердина. В 1893 году его назначили куратором Музея Королевской лондонской больницы – там он демонстрировал посетителям анатомические препараты.

Человеком он был любознательным, поэтому внимательно следил за новостями анатомии и охотно общался с исследователями. В 1905 году Кейт познакомился с кардиологом Джеймсом Маккензи и вслед за новым другом заболел исследованиями сердечной проводимости.

В конце 1905 года Маккензи показал Кейту статью, посвященную сердечным узлам, и предложил поискать такие же на анатомических препаратах сердца. Кейт согласился, но ничего не нашел, о чем и написал в ответном письме.

Но Маккензи не успокоился и переслал Кейту статью Людвига Ашоффа, посвященную исследованиям Тавары, в которой тот описывал, как пучок Гиса растет из атриовентрикулярного узла. Кейт честно признал свою ошибку, а после обнаружил и саму описанную Таварой систему. Но теперь ему нестерпимо захотелось узнать, откуда же берется электрическая искра, возбуждающая атриовентрикулярный узел.

Сказано – сделано. Летом 1906 года Кейт создал в своем коттедже импровизированную анатомическую лабораторию и позвал в помощники соседского сына Мартина Флэка.

Опираясь на уже опубликованные статьи, энтузиасты предположили, что электрическая искра должна возникать в области, где в правое предсердие впадает верхняя полая вена. Чтобы найти точное место, они сделали тонкие срезы сердца и отправили препараты под микроскоп.

По легенде, Мартин Флэк обнаружил искомый узел, когда его босс с супругой катались по окрестностям на велосипеде. На стыке верхней полой вены с правым предсердием он обнаружил бугорок, очень похожий на узел Тавары. Этот бугорок явно отвечал за что-то важное, потому что к нему шла собственная небольшая артерия.

Но самое важное открытие состояло в том, что к узелку Кейта и Флэка – сегодня мы называем эту анатомическую структуру синоатриальным узлом – были подключены блуждающий и симпатический нервы.

Хорошенько все перепроверив, исследователи пришли к выводу, что нервы – это и есть источник электрической искры, которая разбегается по всему «дереву» Тавары, заставляя сердечную мышцу сокращаться. Наконец-то загадка была разгадана!

Сложим открытия в одну корзину

Сегодня мы знаем, что сердце действительно способно сокращаться самостоятельно, без контроля нервной системы. Но для того чтобы завестись, сердцу, как и мотору в машине, нужна первоначальная искра. В машине искру высекает свеча зажигания, а в сердце за первоначальный электрический импульс отвечают нервы, которые подходят к синоатриальному узлу.

После того как первоначальный нервный импульс задаст ритм, синоатриальный узел становится самостимулируемым, то есть для того, чтобы задавать ритм, ему больше не нужно получать сигналы от нервов. От синоатриального узла в левое предсердие и к атриовентрикулярному узлу бегут мышечные пучки.

Проходя по предсердным пучкам, нервный импульс способствует сокращению предсердий. Затем он добирается до атриовентрикулярного узла, разбегается по пучку Гиса по желудочкам, и они тоже начинают сокращаться. А поскольку до предсердия импульс добирается раньше, чем до желудочков, возникает пауза, столь необходимая для работы сердца.

Как открытие проводящих путей сердца изменило кардиологию

Перечислять, к каким революционным изменениям привели открытия анатомов XX века, можно долго. Расскажем хотя бы о двух из них – об электрокардиографе и электрокардиостимуляторе.