Добавить в цитаты Настройки чтения

Страница 7 из 10



Список используемых в дипломе работ пестрил многими фамилиями: привычными для электроники середины 80-х – японскими, американскими, тайваньскими (материковый Китай тогда еще только набирал научные обороты) и, что удивительно, русскими – тоже. Еще более удивительно оказалось то, что русские имена в этой тематике преобладали. И среди этих имен ярко доминировало одно – Жорес Алферов. Имя это звучало везде, где всерьез начинали говорить об оптоэлектронике – той электронике, где в процессах участвуют не только электроны, но и фотоны. То есть где излучается или поглощается свет.

    Наш НИИ материалов электронной техники как раз и был «заточен» на эту самую оптоэлектронную тематику. Стартовал в конце 60-х –  начале 70-х недалеко от Москвы, в Калуге, когда мировая гонка за суперэффективными полупроводниковыми излучателями вошла в решающую фазу. Когда японцы, русские и американцы шли «ноздря в ноздрю». И когда советская оптоэлектроника стала постепенно уходить в отрыв от своих зарубежных «партнеров». В такое чудо сегодня не верится. Но было именно так: команда Жореса Алферова к середине 70-х нащупала уникальные светоизлучающие полупроводниковые материалы, сделавшие к началу XXI века, по сути, переворот в науке. И технике – тоже. И во всей земной цивилизации – заодно. То есть – революцию…

Короче: если вы читаете этот текст – стало быть, пользуетесь открытиями Жореса Алферова. Нет человека на земле, который бы сегодня их игнорировал. Думаю, аборигены Австралии – не исключение. Так вот: включаете дома свет (а он наверняка уже от светодиодной лампочки) – пользуетесь. Смотрите телевизор (с латинской аббревиатурой LED на панели, да и без нее – тоже) – пользуетесь. Заглядываете в свой мобильник, ноутбук, изучаете светящуюся панель новенького авто, смотрите на городскую иллюминацию, на мигающие светофоры, габаритные огни пробегающих мимо легковушек и автобусов,

обследуетесь

в поликлинике или лечитесь в больнице (где лазер стал главным помощником и терапевта и хирурга), летите в космос (а что тут такого?), входите в интернет,  вообще – купаетесь в благах информационной цивилизации (которая сегодня немыслима без передачи сигналов по оптоэлектронной схеме) – помните, кому вы обязаны всем этим, ставшими вообще-то уже вполне обыденными, но, тем не менее, настоящим

техночудесам. За нами стоит наш выдающийся соотечественник – Жорес Иванович Алферов.

    Если коротко – человеку удалось укротить свет. Или так – приручить его. А если еще точнее – не только приручить обычный свет, но и научить его делать такие вещи, которые сама природа сконструировать не догадалась. Жоресу Алферову со своими соратниками по Ленинградскому Физтеху в 60-70-х годах прошлого века удалось найти новый способ трансформации электрической энергии в световую и обратно с помощью абсолютно новых на тот момент материалов, не использующихся ранее для этой цели. Это были полупроводники на основе арсенида галлия и арсенида алюминия. А если точнее – твердые растворы в системе галлий-алюминий-мышьяк. Причем получаемые с помощью особо тонкой технологии – последовательным наращиванием (из газа, из жидкой фазы, из молекулярных пучков) тончайших пленок (эпитаксиальных слоев) этого материала с различными вариациями по содержанию в них составляющих элементов – галлия, алюминия, мышьяка, плюс – электрически активных лигатур. Цель – «поймать» наиболее эффективный состав для запуска излучения при прохождении электрического тока через созданный при помощи таких слоев p-n-переход.

    О полупроводниках, p-n-переходах, создаваемых на их основе диодах, транзисторах и т.д. все знали давно и серьезно. Позиции кремния и германия в полупроводниковой электронике, казалось, уже ничто не могло поколебать. Однако при всех плюсах эти эффективные, технологичные и относительно недорогие материалы имели ряд существенных «но». В частности, квантовая механика не позволяла им участвовать в генерации фотонов. То есть излучать свет. Такой милости природа удостоила лишь полупроводники синтетические. Особых составов. В частности, синтезированных из элементов III и V групп периодической системы Менделеева. Те же галлий и мышьяк. Или – индий и мышьяк. Или – галлий и фосфор и т.д. Не только их, но их – в особенности.



   Так наука напала на след светоизлучающих полупроводников. Это была середина прошлого века. В мире началась гонка за теоретическое и практическое воплощение оптоэлектронных материалов на основе соединений A3B5. Все понимали, что речь идет о получении источников света в десятки, сотни, тысячи раз эффективней, компактней, производительней и т.д., нежели обычные лампочки накаливания и иже с ними осветительный мезозой.

     «Мы их надрали!» – не без гордости вспомнит много лет спустя мировую гонку на получение эффективных светоизлучающих структур Жорес Алферов. Его команде удалось первой синтезировать так называемые гетероструктуры на основе твердых растворов галлий-алюминий-мышьяк. Этакие многослойные полупроводниковые «бутерброды» с микронными и даже долей микронов толщиной эпитаксиальных слоев нужных составов. При прохождении через них электрического тока «слойка» начинала излучать. Сначала – в ИК-диапазоне. Сложные махинации с составами пленок позволили этот диапазон расширить на красную область спектра. Постепенно в ход пошли не только галлий, алюминий и мышьяк, но и их «родственники» по таблице Менделеева – индий, фосфор, азот и проч. Цель – перекрыть полный солнечный спектр.

    Применение же особых материаловедческих хитростей позволяло получать из таких гетероструктур не только свет обычный, но и когерентный, то есть – лазерное излучение. Так в мире началась оптоэлектронная революция. Мало того, не закончившаяся сегодня, напротив –  набирающая к старту XXI века всё более мощные обороты.

    «XXI век будет веком гетероструктур», – не уставал повторять их «крестный отец» Жорес Иванович Алферов. Сегодня это уже не предвидение. Сегодня – это факт. Простая реальность. Почти обыденность. Которая, увы, всё в меньшей степени обязана той стране, что выпестовала революционную оптоэлектронику. Сейчас она делается, где угодно, только не у нас. Тот же Жорес Алферов в последние годы отчаянно боролся за возвращение отечественной электроники на мировой научный Олимп. Увы, тщетно. «Наш потенциал здесь сегодня – от силы 20-25 процентов того, что было в свое время в РСФСР», – горестно признавал в последние годы жизни великий российский ученый…

    Если въезжать сегодня в Калугу с юга, то по левую руку взгляд натолкнется на мертвый архитектурный колосс, приветствующий гостей города десятками пустых оконных проемов, торчащими из бетонных стыков полуобсыпавшихся стен березами и кустами, а также размашистой, метров пять длиной, гудронной надписью под самой крышей: «Продается».

    Так драматически закончил свой путь на калужской земле первый и, скорее всего, последний «нобелевский» сюжет, напоминать о котором в городе не принято. А именно – о появлении в Калуге полвека назад прорывного научного центра, вышедшего впоследствии на «столбовую нобелевскую» дорогу, пробитую сначала Жоресом Алферов, а затем устремившейся вслед за ним целой плеядой американских и японских специалистов по физике твердого тела. Это и был НИИ материалов электронной техники, где мне довелось начинать свой инженерный путь. Как, впрочем, его и заканчивать.

    Именно здесь, в Калуге, планировалось в конце 80-х создать столицу советских гетероструктур, а также всего того, из чего их получали. Тех самых гетероструктур, что завоевали с легкой руки Жореса Алферова весь мир сегодня. Но – завоевали его уже без нас. Без России. Тот же Калужский мегацентр оптоэлектронных материалов умер, не пережив драматических российских реформ. Оставил на память лишь пустые стены гигантских корпусов, здание НИИ, приспособленное сегодня под салон диванов и шиномонтаж, да уникальный барельеф на институтском фасаде с мозаикой на тему уравнений Планка и Эйнштейна. Подозреваю – единственный в мире монумент квантовой механике. Правда, встречающий теперь не цвет российской и мировой науки, а мелких обывателей, обуреваемых желанием выбрать диван помягче…