Добавить в цитаты Настройки чтения

Страница 94 из 106

Here they are:

1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.

2. A robot must obey the orders given it by human beings except where those orders would conflict with the First Law.

3. A robot must protect its own existence except where such protection would conflict with the First and Second Law.

These laws were programmed into the computerized brain of the robot, and the numerous stories I wrote about robots took them into account. Indeed, these laws proved so popular with the readers and made so much sense that other science fiction writers began to use them (without ever quoting them directly-only I may do that), and all the old stories of robots destroying their creators died out.

Ah, but that’s science fiction. What about the work really being done now on computers and on artificial intelligence? When machines are built that begin to have an intelligence of their own, will something like the Three Laws of Robotics be built into them?

Of course they will, assuming the computer designers have the least bit of intelligence. What’s more, the safeguards will not merely be like the Three Laws of Robotics; they will be the Three Laws of Robotics.

I did not realize, at the time I constructed those laws, that humanity has been using them since the dawn of time. Just think of them as “The Three Laws of Tools,” and this is the way they would read:

1. A tool must be safe to use.

(Obviously! Knives have handles and swords have hilts. Any tool that is sure to harm the user, provided the user is aware, will never be used routinely whatever its other qualifications.)

2. A tool must perform its function, provided it does so safely.

3. A tool must remain intact during use unless its destruction is required for safety or unless its destruction is part of its function.

No one ever cites these Three Laws of Tools because they are taken for granted by everyone. Each law, were it quoted, would be sure to be greeted by a chorus of “Well, of course!”

Compare the Three Laws of Tools, then, with the Three Laws of Robotics, law by law, and you will see that they correspond exactly. And why not, since the robot or, if you will, the computer, is a human tool?

But are safeguards sufficient? Consider the effort that is put into making the automobile safe-yet automobiles still kill 50,000 Americans a year. Consider the effort that is put into making banks secure-yet there are still bank robberies in a steady drumroll. Consider the effort that is put into making computer programs secure-yet there is the growing danger of computer fraud.

Computers, however, if they get intelligent enough to “take over,” may also be intelligent enough no longer to require the Three Laws. They may, of their own benevolence, take care of us and guard us from harm.





Some of you may argue, though, that we’re not children and that it would destroy the very essence of our humanity to be guarded.

Really? Look at the world today and the world in the past and ask yourself if we’re not children-and destructive children at that-and if we don’t need to be guarded in our own interest.

If we demand to be treated as adults, shouldn’t we act like adults? And when do we intend to start?

Future Fantastic

In the past, three fundamental advances in human communication evolved that altered every facet of our world enormously and permanently. The first advance was speech, the second writing, and the third printing.

Now we face a fourth advance in communication every bit as important as the first three-the computer. This fourth revolution will enable most human beings to be more creative than they’ve ever been before. And provided we do not destroy the world by nuclear warfare, overpopulation or pollution, we will have a world of the technochild-a world as different from our present one as today’s is from the world of the caveman. How will the lives of the next generation be different from their parents and grandparents?

One immediate response is to view the computer merely as another form of amusement, rather like a super-TV. It can be used for complex games, for making contact with friends, or for various trivial pursuits. Still, such things can change the world. For one thing, communication by computer networks can wipe out the feeling of distance. It can make the globe seem like a neighborhood, and this can have important consequences-the development of the concept of humanity as a single society, not as a collection of endlessly and inevitably warring social segments. The world might develop a global lingua franca, a language (no doubt something quite close to today’s English) that everyone can understand, even though people would retain their individual languages for local use.

Then, too, since communication will be so easy and since mechanical and electronic devices can be controlled remotely (telemetering, for example, makes it possible even now for engineers to send instructions to-and obtain obedience from-devices sailing past planets billions of miles away), computers will reduce the necessity of using physical transportation to gain or gather information.

There will, of course, be no bar to travel. You can still be a tourist or visit friends or family in person rather than by closed-circuit television. But you will not have to battle hordes of people merely to carry or receive information that can be transferred by computer.

This means that the technochildren of tomorrow will be accustomed to living in a decentralized world, to reaching out in a variety of ways from their homes-or wherever they are-to do what needs doing. At one and the same time, they will feel both entirely isolated and in total contact.

The children of the next generation-and the society they will create-will see the greatest impact from computers in the area of education. Currently our society is intent on educating as many children as possible. The limit in the number of teachers means that students learn in mass. Every student in a school district or state or nation is taught the same thing at the same time in more or less the same way. But because each child has individual interests and methods of learning, the experience of mass education turns out to be unpleasant. The result is that most adults resist the learning process in postschool life; they’ve had enough of it.

Learning could be pleasant, even all-absorbingly fascinating, if children studied something that specifically interested them individually, on their own time and in their own way. Such study is currently possible through public libraries. But the library is a clumsy tool. One must go there, borrowing is limited to a few volumes, and books must be returned after a short time.

Clearly the solution is to move libraries into the home. Just as record players brought home the concert hall and television brought home the movie theater, the computer can bring home the public library. Tomorrow’s technochildren will have a ready means of sating their curiosity. They will know at an early age how to command their computers to give listings of materials. As their interests are aroused (and guided, it is to be hoped, by their teachers at school), they will learn more in less time and find new byways to follow.

Education will have a strong component of self-motivation added to it. The ability to follow a personal path will encourage the technochild to associate learning with pleasure and grow into a lively technoadult-eager, curious, and ready to expand the mental environment for as long as his or her brain remains physically undulled by the ravages of old age.

This new approach to education can also influence another area of life: work. Until now, most human beings have worked at jobs that seriously underutilized the brain. In the ages when work consisted largely of brutish physical labor, few ever had the chance to lift their eyes to the stars or ponder abstractions. Even when the Industrial Revolution brought machinery that could lift the load of physical labor from the backs of humanity, meaningless “skilled” work took its place. Today employees on the assembly line and in offices still perform jobs that require little thought.