Добавить в цитаты Настройки чтения

Страница 100 из 106

It would seem that computers, even comparatively simple and primitive specimens, are extraordinarily good in some ways. They possess capacious memories, have virtually instant and unfailing recall, and demonstrate the ability to carry through vast numbers of repetitive arithmetical operations without weariness or error. If that sort of thing is the measure of intelligence, then already computers are far more intelligent than we are. It is because they surpass us so greatly that we use them in a million different ways and know that our economy would fall apart if they all stopped working at once.

But such computer ability is not the only measure of intelligence. In fact, we consider that ability of so little value that no matter how quick a computer is and how impressive its solutions, we see it only as an overgrown slide rule with no true intelligence at all. What the human specialty seems to be, as far as intelligence is concerned, is the ability to see problems as a whole, to grasp solutions through intuition or insight; to see new combinations; to be able to make extraordinarily perceptive and creative guesses. Can’t we program a computer to do the same thing? Not likely, for we don’t know how we do it.

It would seem, then, that computers should get better and better in their variety of point-by-point, short-focus intelligence, and that human beings (thanks to increasing knowledge and understanding of the brain and the growing technology of genetic engineering) may improve in their own variety of whole-problem, long-focus intelligence. Each variety of intelligence has its advantages and, in combination, human intelligence and computer intelligence-each filling in the gaps and compensating for the weaknesses of the other-can advance far more rapidly than either one could alone. It will not be a case of competing and replacing at all, but of intelligences together, working more efficiently than either alone within the laws of nature.

My Robots

I wrote my first robot story, “Robbie,” in May of 1939, when I was only nineteen years old.

What made it different from robot stories that had been written earlier was that I was determined not to make my robots symbols. They were not to be symbols of humanity’s overweening arrogance. They were not to be examples of human ambitions trespassing on the domain of the Almighty. They were not to be a new Tower of Babel requiring punishment.

Nor were the robots to be symbols of minority groups. They were not to be pathetic creatures that were unfairly persecuted so that I could make Aesopic statements about Jews, Blacks or any other mistreated members of society. Naturally, I was bitterly opposed to such mistreatment and I made that plain in numerous stories and essays-but not in my robot stories.

In that case, what did I make my robots?-I made them engineering devices. I made them tools. I made them machines to serve human ends. And I made them objects with built-in safety features. In other words, I set it up so that a robot could not kill his creator, and having outlawed that heavily overused plot, I was free to consider other, more rational consequences.

Since I began writing my robot stories in 1939, I did not mention computerization in their co

At first, I did not bother actually systematizing, or putting into words, just what the safeguards were that I imagined to be built into my robots. From the very start, though, since I wasn’t going to have it possible for a robot to kill its creator, I had to stress that robots could not harm human beings; that this was an ingrained part of the makeup of their positronic brains.

Thus, in the very first printed version of “Robbie,” I had a character refer to a robot as follows: “He just can’t help being faithful and loving and kind. He’s a machine, made so.”

After writing “Robbie,” which John Campbell, of Astounding Science Fiction, rejected, I went on to other robot stories which Campbell accepted. On December 23, 1940, I came to him with an idea for a mind-reading robot (which later became “Liar!”) and John was dissatisfied with my explanations of why the robot behaved as it did. He wanted the safeguard specified precisely so that we could understand the robot. Together, then, we worked out what came to be known as the “Three Laws of Robotics. “ The concept was mine, for it was obtained out of the stories I had already written, but the actual wording (if I remember correctly) was beaten out then and there by the two of us.





The Three Laws were logical and made sense. To begin with, there was the question of safety, which had been foremost in my mind when I began to write stories about my robots. What’s more I was aware of the fact that even without actively attempting to do harm, one could quietly, by doing nothing, allow harm to come. What was in my mind was Arthur Hugh Clough’s cynical “The Latest Decalog,” in which the Ten Commandments ate rewritten in deeply satirical Machiavellian fashion. The one item most frequently quoted is: “Thou shalt not kill, but needst not strive / Officiously to keep alive.”

For that reason I insisted that the First Law (safety) had to be in two parts and it came out this way:

1. A robot may not injure a human being, or, through inaction, allow a human being to come to harm.

Having got that out of the way, we had to pass on to the second law (service). Naturally, in giving the robot the built-in necessity to follow orders, you couldn’t forfeit the overall concern of safety. The Second Law had to read as follows, then:

2. A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.

And finally, we had to have a third law (prudence). A robot was bound to be an expensive machine and it must not needlessly be damaged or destroyed. Naturally, this must not be used as a way of compromising either safety or service. The Third Law, therefore, had to read as follows:

3. A robot must protect its own existence, as long as such protection does not conflict with the First or Second Laws.

Of course, these laws are expressed in words, which is an imperfection. In the positronic brain, they are competing positronic potentials that are best expressed in terms of advanced mathematics (which is well beyond my ken, I assure you). However, even so, there are clear ambiguities. What constitutes “harm” to a human being? Must a robot obey orders given it by a child, by a madman, by a malevolent human being? Must a robot give up its own expensive and useful existence to prevent a trivial harm to an unimportant human being? What is trivial and what is unimportant?

These ambiguities are not shortcomings as far as a writer is concerned. If the Three Laws were perfect and unambiguous there would be no room for stories. It is in the nooks and cra

I did not specifically state the Three Laws in words in “Liar!” which appeared in the May 1941 Astounding. I did do so, however, in my next robot story, “Runaround,” which appeared in the March 1942 Astounding. In that issue on line seven of page one hundred, I have a character say, “Now, look, let’s start with the three fundamental Rules of Robotics,” and I then quote them. That incidentally, as far as I or anyone else has been able to tell, represents the first appearance in print of the word “robotics”-which, apparently, I invented.