Страница 4 из 9
Политехническая школа предоставила Карно доступ к великолепному двухлетнему курсу о новейших открытиях в математике и физике. Окончив учебу в октябре 1814 года, Карно должен был поступить на службу в инженерный корпус французской армии, но в дело вмешалась история. 18 июня 1815 года британские, прусские и другие союзные европейские войска разгромили Наполеона в битве при Ватерлоо и отправили его в изгнание на далекий остров Святой Елены, находящийся посреди Атлантического океана. Более миллиона иностранных солдат, составлявших так называемую армию Седьмой коалиции, оккупировали Францию и возвели на престол нового короля Людовика XVIII, брата Людовика XVI, который был обезглавлен в период революции. Эти события пагубно сказались на семье Карно – не в последнюю очередь потому, что незадолго до свержения Наполеон назначил Лазара Карно министром внутренних дел. Из-за близости к Наполеону новое французское правительство не доверяло Лазару и потому отправило его в ссылку в немецкий город Магдебург. Сади Карно остался в Париже, где отныне чувствовал себя отверженным. При Наполеоне старшие офицеры французской армии выделяли и хвалили Сади, поскольку он носил фамилию Карно, но теперь старшие по званию перестали прислушиваться к нему и стали отправлять его в отдаленные районы Франции. Должно быть, он очень обрадовался, когда в 1819 году в звании лейтенанта вернулся в Париж, где его перевели на половинный оклад, благодаря чему он получил возможность заниматься своими делами, лишь изредка участвуя в военных учениях.
В свободное время Карно подпитывал свой интерес к науке и технологиям. Он посещал фабрики в развивающихся промышленных районах Парижа и углублял приобретенные ранее знания, слушая лекции в Консерватории искусств и ремесел, где преподавал Жан-Батист Сэй. Консерватория располагалась в бывшем монастыре на востоке Парижа. По задумке революционного правительства, она, как и Политехническая школа, должна была способствовать народному просвещению. После реставрации Бурбоны продолжили финансирование Консерватории, но из-за связи с прошлыми режимами подозревали многих преподавателей и студентов в тайной подготовке бунта, а потому наводнили заведение шпионами.
Тем не менее в Консерватории царил удивительный дух познания, и именно там Карно познакомился с преподавателем химии Николя Клеманом, который научил его всему, что было известно о температуре и теплоте.
Понятие температуры проще для восприятия, чем понятие теплоты. Чтобы интуитивно нащупать путь к нему в соответствии с представлениями начала XIX века, считайте температуру мерой того, насколько горячим кажется вещество. Представьте, например, большой чан и маленький ковшик. Оба наполнены водой из одного крана. Если окунуть палец в любой из них, ощущения будут одинаковыми. Если поместить в любой из них термометр, он покажет одинаковые значения.
Понять, что такое теплота, гораздо сложнее. Поставьте оба сосуда на плиту, и температура содержащейся в них воды начнет расти по мере высвобождения “теплоты” при сжигании газа. Но чтобы температура воды в сосудах стала одинаковой, больший из них должен стоять на плите гораздо дольше. Такие наблюдения позволяют предположить, что при воздействии на вещество теплота повышает его температуру на некоторую величину, зависящую от количества вещества. Но что такое теплота? Что выделяется при сжигании газа и делает всё горячее?
Во времена Клемана и Карно большинство ученых считало теплоту невидимой субстанцией, называемой теплородом и состоящей из крошечных невесомых частиц, которые высвобождаются при горении веществ. Предполагалось, что частицы теплорода отталкиваются друг от друга, а потому стремятся от горячего к холодному, сглаживая разницу температур. Отскакивая друг от друга, частицы теплорода проникают сквозь крошечные поры, которые, как считалось, существуют во всех веществах, и рассеиваются, тем самым нагревая вещество. Чем больше объем вещества, тем больше теплорода требуется для повышения температуры до заданного уровня. Кроме того, теплород не только нагревает вещества, но порой и приводит к их таянию или кипению. Многие ученые считали теплород газообразным элементом вроде кислорода, который имеет способность перемещаться с места на место. Предполагалось, что теплород, подобно кислороду и другим элементам такого типа, невозможно ни создать, ни уничтожить.
Однако к началу XIX века многие ученые стали подмечать слабости теории теплорода. Одним из них был американский эмигрант Бенджамин Томпсон, который работал в Мюнхене, где занимал должность военного советника курфюрста Баварии. Среди прочего он управлял национальным арсеналом, где обнаружил, что при высверливании каналов в пушечных стволах инструментом, напоминающим огромную буровую головку, создается трение, которое производит огромное количество теплоты. Чтобы изучить этот эффект, Томпсон погрузил пушечный ствол под воду и приступил к высверливанию канала. Через два с половиной часа выделилось столько теплоты, что вода закипела.
В статье, представленной на рассмотрение ведущей научной организации Британии, Королевскому обществу, Томпсон утверждал, что теория теплорода объясняет, почему теплота выделяется при горении, но ничего не говорит о трении. В первом случае можно предположить, что частицы теплорода содержатся в топливе и высвобождаются при его сжигании. Как только топливо заканчивается, выделение теплоты прекращается. Трение, однако, кажется неисчерпаемым источником теплоты, которая не перестает выделяться, пока объекты трутся друг о друга под действием механического усилия. Иными словами, складывалось впечатление, что трение создает теплоту, а не освобождает ее. Это шло вразрез с положением теории теплорода о том, что теплоту нельзя ни создать, ни уничтожить. (Томпсон, главный критик теории теплорода, женился на Марии-Анне Лавуазье, вдове одного из основоположников теории, знаменитого французского химика Антуана Лавуазье, который был казнен в период террора. Брак Томпсона с мадам Лавуазье оказался коротким.)
Помимо сильных и слабых сторон теории теплорода, Карно узнал о вкладе Клемана в изучение теплоты и, в частности, выяснил, что он разработал объективный способ ее количественной оценки. До Клемана, несмотря на целое столетие использования паровых машин, не существовало универсальной единицы измерения количества теплоты. Корнуоллские горные инженеры ввели представление о “мощности” двигателя, которая определялась количеством фунтов воды, поднимаемых на один фут при сжигании в котле одного бушеля угля. Однако инженерам не приходило в голову измерять количество теплоты, выделяемой углем при сжигании. Люди также знали, например, что кипячение литра воды требует больше теплоты, чем кипячение литра спирта, но не имели общепринятого способа провести количественное сравнение. Клеман его нашел.
Нам известно об этом из сохранившегося анонимного конспекта лекций Клемана. В нем содержатся исторические слова: “Месье Клеман представляет единицу теплоты, которую называет «калорией». Одна калория – это количество теплоты, необходимое для нагревания одного килограмма воды на один градус Цельсия”. Это определение калории по-прежнему верно при измерении энергетической ценности пищи. Например, юо-граммовый пакет картофельных чипсов, содержащий около 500 калорий, по определению Клемана, выделит при сгорании достаточно теплоты, чтобы повысить температуру 500 килограммов воды на 1 градус Цельсия. (Несколько десятилетий спустя ученые изменили определение калории и стали обозначать этой единицей количество теплоты, необходимое для нагревания одного грамма, а не килограмма воды на один градус Цельсия, поэтому одна калория Клемана эквивалентна тысяче современных.)
На Карно также оказали влияние научные статьи его отца Лазара, написанные в предшествующую революции декаду.
В одной из них, получившей название “Эссе о машинах”, Лазар математически проанализировал работу водяных мельниц.
В частности, Лазар представил идеальную мельницу, где “толкательная сила” воды преобразуется во вращательное движение колеса без потерь. На такой мельнице скорость течения воды постепенно замедляется при вращении колеса, поскольку вся скорость потока преобразуется во вращательное движение. Лазар отметил, что настоящие мельницы далеки от идеала, но о способах исправить ситуацию упомянул лишь вскользь. Вместо этого он сосредоточился на физике гидроэнергетики и обратился к математике. Строители мельниц, как и следовало ожидать, не обратили внимания на его абстрактные рассуждения, но его сыну такой подход помог оставить более заметный след в науке.