Добавить в цитаты Настройки чтения

Страница 6 из 11



Конверсия парового природного газа обычно происходит в два этапа. Первый этап осуществляется в трубах, заполненных никелевым катализатором, нанесенным на алюминиевую подложку, рис. 2.3.

Рис. 2.3. Схема реактора паровой конверсии природного газа

На этом этапе расщепляется метан и водяной пар на водород и монооксид углерода (синтез-газ):

СН4+ Н2О ↔ СО + 3Н2–206 кДж/моль.

На втором этапе выход водорода увеличивается благодаря дополнительной реакции СО с водой при пониженных температурах в присутствии катализаторов

«Реакция сдвига» превращает монооксид углерода и воду в диоксид углерода и водород:

СО + Н2О ↔ СО2+ Н2+ 44 кДж/моль.

Эта реакция происходит при температурах 200–250°С. При осуществлении указанных реакций может быть извлечено около 96 % водорода, а необходимая теплота процесса получается при сжигании части природного газа. Тепло, необходимое для процесса, подается через стенки труб, нагретых снаружи путем сжигания другой части природного газа.

Очистка продуктового водорода производится в блоке короткоцикловой адсорбции (КЦА).

В парокислородной конверсии вместе с горячим паром в активную зону реактора подаётся кислород. Реакции процесса аналогичные, однако, дополнительно происходит окисление метана кислородом:

CH4+O2 ↔ 2CO+3H2.

Реагирование веществ в парокислородной конверсии метана даёт общий результирующий тепловой эффект, равный нулю. Это делает установку дороже на 5–10 %.

Главное преимущество парокислородной конверсии по сравнению с ПКМ – передача теплоты напрямую, а не через стенку теплообменника. Сравнение характеристик ПКМ и парокислородной конверсии представлено в таблице 2.1.

Таблица 2.1. Сравнение характеристик ПКМ и парокислородной конверсии

В настоящий момент уже разработан высокоэффективный проточный мембранный аппарат для одновременного риформинга метана и окисления СО на никелевых и палладиевых катализаторах. Чистота водорода достигает 99,999 %, тогда как при конверсии природного газа – всего 76,2 %.

Наиболее критическими параметрами в этом способе производства водорода являются выбор оптимальной температуры процесса и выбор материала катализатора, т. е. его состава, а также стабильность работы такого катализатора. Для этих целей используются следующие типы катализаторов.

1. Разложение метана в присутствии массивного металлического катализатора (Fe, Co, Ni) при Т = 650–720°С.

2. Разложение углеводородных газов на поверхности железосодержащего катализатора при Т = 850–900°С под давлением 1–35 атм.

3. Разложение метана или других углеводородов на поверхности брикетированной сажи с никелем или сажи с железом при температурах ниже точки разложения этих соединений.

4. Разложение метана на поверхности катализаторов Ni/Al2O3 или Ni/Mg при Т =500–550°С.

5. Разложение метана на поверхности катализаторов Ni-Cu/Al2O3 или Ni-Cu/Mg при Т = 560–650°С.

Схема процесса конверсии метана следующая, рис. 2.4.

.

Рис. 2.4. Схема процесса конверсии метана

Процесс конверсии метана состоит из следующих стадий.

1. Природный газ с содержанием CH4–97 % поступает в сатуратор (1), где нагревается до 80°C и насыщается водяным паром, затем поступает в теплообменник (2).



2. В теплообменнике (2) газ нагревается до 500°C отходящими конверторными газами, смешивается с кислородом или воздухом и подаётся в конвертор (3).

3. В конверторе (3) сначала идут экзотермические реакции:

CH4+ ½O2CO + 2H2+ Q

CH4+ 2O2CO2+ 2H2O + Q

и температура повышается до 1000°C. Затем протекают эндотермические реакции:

CH4+ H2OCO + 3H2 – Q

CH4+ CO22CO + 2H2 – Q

Конвертированный газ содержит H2–51–54 %, N2(если подавали воздух) – 20 %, CO – 20 %, CO2–7 %, CH4–0,5 %.

4. Затем газ увлажняется в увлажнителе (4), охлаждается до 400–500°C в теплообменнике (2) и поступает в конвертор CO (5).

5. В конверторе CO (5) газ проходит ряд тарелок с катализатором, охлаждаясь между ними конденсатом.

6. Далее проходит через теплообменник (6).

7. И в промывной башне (7) очищается от твёрдой части и от CO, CO2, O2 методом последовательной конденсации

В итоге получается либо чистый водород в случае использования для конверсии метана чистого кислорода, либо азото-водородная смесь, если используют в качестве окислителя воздух.

Технология получения водорода обычно включает очистку сырья от серосодержащих соединений, каталитическую конверсию углеводорода (УВ) с водяным паром и 4-хстадийную очистку конвертированного газа от оксидов углерода. Такую схему можно назвать классической, рис. 2.5.

Рис. 2.5. Блок-схема производства водорода и азотоводородной смеси конверсией легких углеводородов

Конкретным сырьем могут служить любые УВ газы (природные, попутные), нафта и т. п. Для получения 1 т водорода требуется 5–6,6 тыс. м3 природного газа.

Обессеривание сырья – удаление газообразных сернистых соединений, поскольку они являются сильными каталитическими ядами. Это стадия подготовки сырья для производства водорода и АВ смеси.

2.1.1. Пиролиз метана

Пиролиз метана – это умеренно эндотермический процесс разложения природного газа (органического сырья). Пиролиз метана является альтернативным подходом к получению водорода из природного газа без образования CO2 в ходе реакции: CH4→ C↓ + 2H2↑

Пиролиз – это процесс разложения метана на водород и чистый углерод, но только не в виде газа, а в твёрдом состоянии. Соответственно, углекислый газ не выбрасывается в атмосферу, а складируется в твёрдом состоянии. Данный метод не требует улавливания и подземного хранения, поэтому может применяться в качестве промышленного материала для производства углеродных материалов.

При пиролизе метана образуется водород, который может быть использован в энергетике, транспортном секторе, в промышленных/химических процессах, и для снижения выбросов загрязняющих веществ и парниковых газов, а также углерода в твердой форме.

Пиролиз метана относится к целому ряду процессов (по аналогии с конверсией метана), которые могут быть разделены на 4 больших класса – термический пиролиз, каталитический пиролиз, плазменный пиролиз, а также отдельно может быть выделен пиролиз в расплавах металлов.

В настоящее время процессы получения водорода пиролизом метана не выведены на промышленный уровень, но научные исследования ведутся по всем четырем направлениям. В то время, как компании BASF, Thyssenkrupp и Linde сосредоточились на процессе термического пиролиза, американская компания Monolith занимается плазменным пиролизом. Другой подход применяют IASS и KIT – использование жидкого металла в качестве теплоносителя. Напротив, австралийский процесс HAZER® компании Hazer Group основан на каталитическом пиролизе метана.

Для термического разложения метана необходимы высокие температуры (выше 1000°C). Использование катализатора помогает увеличить скорость реакции и таким образом снижает температуру, требуемую для конверсии природного газа. Технологической особенностью такого процесса является периодическое восстановление катализатора, что сопровождается выбросами диоксида углерода и повышает «углеродный след» получения водорода.