Добавить в цитаты Настройки чтения

Страница 5 из 10

Как это возможно, что хирургическое удаление такой крупной части мозга никак себя не проявляет? А вот как: оставшаяся часть динамически перемонтировала свои нейронные связи, чтобы взять на себя функции отсутствующего полушария. Первоначальные схемы нейронной сети приспосабливались, чтобы помещаться в меньшем пространстве и сосредоточивать в себе все функции нормальной жизни, располагая лишь половиной прежнего «оборудования». Из смартфона нельзя выкинуть половину электронной начинки и рассчитывать, что он по-прежнему будет посылать и принимать звонки, ибо хардвер – штука тонкая и уязвимая. Лайфверу все нипочем, он прочный и стойкий.

В 1596 году фламандский картограф Авраам Ортелий как-то разглядывал карту мира, и вдруг его озарило: контуры обеих Америк и Африки со стороны Атлантического океана удивительно подходили друг к другу, как фрагменты пазла. Их явно можно было совместить, хотя картограф не имел представления, какая сила могла разъединить их, растащив в стороны. В 1921 году немецкий геофизик Альфред Вегенер выдвинул гипотезу материкового дрейфа: вопреки представлениям, что материки неподвижны и их взаимное расположение незыблемо, они, судя по всему, дрейфуют, словно исполинские кувшинки. Дрейф материков происходит микроскопическими темпами (примерно теми же, какими у вас растут ногти), но если бы мы сумели снять фильм продолжительностью в миллионы лет, то увидели бы материковую сушу как часть динамической текучей системы, которая меняется, повинуясь законам распределения тепла и давления.

Подобно земному шару, мозг тоже представляет собой динамическую текучую систему. Но каким законам она подчиняется? Число научных статей о нейропластичности перевалило за сотни тысяч. Но и сегодня, взирая на эту таинственную розоватую самонастраивающуюся материю, мы не знаем всеобщих основ, которые подсказали бы нам, почему и как мозг творит свои чудеса. Данная книга в целом обрисовывает эти основы, что позволит нам лучше понять, кто мы, как стали такими и куда идем.

Раз уж мы переключились на образ мышления в категориях живой нейронной сети, следует признать, что нынешние машины с жестко заданной конструкцией безнадежно бесполезны для нас в будущем. В самом деле, традиционное проектирование машин и механизмов предполагает тщательную проработку всех важных конструктивных элементов. Автостроительная компания, например, при модернизации ходовой части автомобиля долгие месяцы проектирует двигатель, который бы в точности отвечал новым параметрам. А теперь представьте, что вы спроектировали автомобилю новый кузов по собственному усмотрению, а двигатель самостоятельно, без вашего участия, под этот кузов подстраивается. Как мы увидим далее, стоит нам понять принципы построения живой нейронной сети, и мы обратим себе на пользу гений Матери-природы при создании новых машин, которые сами гибко определят, какой быть схеме их соединений, посредством самооптимизации под характер вводных данных и обучения на накопленном опыте.

Самое волнующее в жизни – не то, кто мы есть сейчас, а трепетное ожидание новой личности, которая постоянно подспудно вызревает в нас. Так и колдовство мозга кроется не в его элементах, а в том, как эти элементы каждый миг по-новому свиваются-перевиваются, образуя динамичную, наэлектризованную живую ткань.

Даже несколько страничек, которые вы сейчас прочитали, и те изменили ваш мозг: заполняющие их печатные символы стронули лавину из миллионов микроперемен в бескрайних лесах ваших нейронных связей, вылепив новую личность, чуточку отличную от той, какой вы были в начале главы.

Глава 2. Просто добавь реальности

Мозг является в мир не чистым листом – он приходит уже экипированным под определенные ожидания. Возьмем, например, цыпленка: вылупившись из яйца, он уже через несколько минут ковыляет на маленьких, неверных пока ножках и даже умеет неуклюже бегать, а если что, может и затаиться. Среда обитания не позволяет цыпленку потратить месяцы на выработку навыков передвижения.

Точно так же и младенцы приходят в мир, уже располагая набором предустановленных программ. Возьмем хотя бы тот факт, что мы уже при рождении оборудованы всем необходимым, чтобы научиться говорить. Или что, глядя на показывающего язык взрослого, младенец способен проделать то же самое, хотя это и требует изощренной способности переводить зрительные впечатления в моторный акт[15]. Или что волокнам глазного нерва не надо учиться находить свои цели в глубинах мозга; они просто следуют подсказкам сигнальных молекул[16] и попадают куда следует – и так происходит всякий раз. За эти жесткие схемы можно сказать спасибо нашим генам. Но генетически обусловленных связей для создания таких схем недостаточно, особенно у человека. Система организована очень сложно, а генов не так уж много. Даже если учитывать «перетасовки, нарезки и склейки»[17], которые делают возможным появление множества разновидностей одного и того же гена, число нейронов и нейронных связей во много раз превышает число генных сочетаний.

В целом уже известно, что в конкретизации схем нейронной сети мозга участвует не только генетика. Ученые еще пару веков назад догадывались о чем-то подобном и правильно предположили, что существенную роль должны играть особенности чувственного опыта. В 1815 году физиолог Иоганн Шпурцгейм допустил, что мозг, подобно мышцам, тоже можно развить упражнениями: его идея состояла в том, что кровь переносит питательные вещества для роста и «обильнее снабжает ими возбужденные участки»[18]. В 1874 году Чарлз Дарвин заинтересовался, можно ли, опираясь на идею Шпурцгейма, объяснить, почему у кроликов в дикой природе размеры мозга больше, чем у их одомашненных собратьев. Дарвин предположил, что животные в природе вынуждены больше использовать смекалку и полагаться на чувства, чем одомашненные кролики; соответственно подстроились и размеры мозга[19].

В 1960-х годах ученые всерьез заинтересовались, появляются ли в мозге заметные измеримые изменения в результате получения опыта. Самым простым было выращивать лабораторных крыс в разных средах: например, в обогащенной, где присутствуют разнообразные игрушки и беговые колеса, или в обедненной – проще говоря, в одиночной пустой клетке[20]. Результаты опытов поражали: среда жизни меняла структуру крысиных мозгов, к тому же выявилась корреляция между структурой мозга и способностью зверьков к обучению и запоминанию. Выращенные в обогащенной среде крысы лучше справлялись с задачами, а при аутопсии[21] у них обнаружились буйные заросли длиннющих дендритов (похожие на ветви отростки, отходящие от тела клетки)[22]. В то же время у крыс, выросших в обедненных условиях, обучаемость была слабой, а нейроны аномально сморщенными. Точно такой же эффект внешней среды обнаружен у птиц, обезьян и других млекопитающих[23]. Внешняя среда имеет большое значение для мозга (рис. 2.1).

Рис. 2.1. В норме нейрон разрастается, будто ветвистое дерево, благодаря чему может соединяться с другими нейронами. В обогащенной среде отростки нейрона разрастаются гуще и ветвятся обильнее, в обедненной среде они чахлые и ссохшиеся

Происходит ли подобное с человеческим мозгом? В начале 1990-х калифорнийские ученые додумались воспользоваться возможностями аутопсии при сопоставлении мозга людей, получивших только школьное образование, и выпускников колледжей. Как и при исследовании лабораторных животных, обнаружилось, что у людей с высшим образованием область, ответственная за понимание устной и письменной речи, содержит более ветвистые и густые заросли дендритов[24].

15

Gopnik A, Schulz L (2004). Mechanisms of theory formation in young children, Trends Cogn Sci 8: 371–377.

16

Сигнальные молекулы – это различные химические вещества, способные передавать внутрь клетки сигналы из внешней среды и внутренней среды организма. Прим. ред.

17

Возможно, автор имеет в виду процессы сплайсинга, когда из базовой матричной РНК в разных условиях вырезаются разные участки и производятся разные белки, или сайленсинга, при котором экспрессия гена может быть подавлена. Прим. науч. ред.

18

Spurzheim J (1815). The physiognomical system of drs. Gall and Spurzheim, 2nd ed. (London: Baldwin, Cradock and Joy).

19

Darwin C (1874). The Descent of man (Chicago: Rand, McNally).

20

Be

21

Аутопсия – патологоанатомическая или судебно-медицинская процедура, посмертное вскрытие и исследование тела, в том числе внутренних органов. Обычно производится для установления причины смерти. Прим. ред.

22

Diamond M (1988). Enriching Heredity (New York: Free Press).

23

Rosenzweig MR, Be

24

Jacobs B, Schall M, Scheibel AB (1993). A quantitative dendritic analysis of Wernicke’s area in humans. II. Gender, hemispheric, and environmental factors, J Comp Neurol 327: 97–111. И тут вы зададите мне резонный вопрос, в какую сторону направлен вектор причинно-следственной связи: разве не могли эти более качественные дендриты развиться не в результате учебы, а наоборот, помогли их обладателям выдержать вступительные испытания в колледж? Хороший вопрос. У нас еще не проводилось экспериментов, которые могли бы прояснить его. Зато в последующих главах мы увидим, что сегодня у нас есть возможность замерять, как меняется мозг непосредственно в процессе обучения новому, в том числе жонглированию, музыке, судовождению и прочему.