Добавить в цитаты Настройки чтения

Страница 4 из 11

В первых четырех главах мы описали, как можно начать путь в Data Science и создать портфолио: так мы попытались решить парадокс, когда опыт можно получить только при изначальном владении практическими навыками. В части 2 мы покажем, как составить сопроводительное письмо и резюме, с которыми вас точно пригласят на собеседование, и расскажем, как создать сеть контактов для получения рекомендации. Мы также рассмотрим стратегии переговоров, которые, как показывают исследования, позволят вам получить наилучшие условия оффера.

Как дата-сайентисту вам необходимо будет разрабатывать методы анализа, взаимодействовать со стейкхолдерами и, возможно, даже участвовать в развертывании модели в производство. Часть 3 поможет понять, как устроены все эти процессы и как можно самому настроиться на успех. В части 4 вы найдете стратегии, которые помогут вам собраться с силами в тех неизбежных случаях, когда ваш проект терпит крах. А когда вы будете готовы, мы поможем вам решить, как продолжать свою карьеру – стать менеджером, остаться исполнителем или даже стать независимым консультантом.

Однако прежде, чем начать этот путь, вы должны разобраться в том, кто такие дата-сайентисты и какую работу они выполняют. Data Science – это очень широкое поле деятельности, которое включает в себя много направлений, и чем лучше вы понимаете разницу между ними, тем успешнее вы сможете в них развиваться.

1.1. Что такое Data Science?

Data Science (DS) – это практика использования данных, с помощью которой можно попытаться понять и решить реальные задачи. Эта концепция не нова; люди анализируют объемы и тенденции продаж с тех пор, как изобрели ноль. Однако за последнее десятилетие нам стало доступно экспоненциально большее количество данных, чем прежде. Появление компьютеров помогло генерировать их, и только путем машинных вычислений можно обрабатывать так много информации. С помощью компьютерного кода дата-сайентист может преобразовывать или накапливать данные, проводить статистический анализ или тренировать модели машинного обучения (МО). В результате могут быть созданы отчет, информационная панель или модель МО, которую можно будет запустить в непрерывную работу.

Например, если розничная компания не может определиться с местом для нового магазина, она может пригласить дата-сайентиста для проведения соответствующего анализа. Он соберет статистические данные об адресах доставки онлайн-заказов, чтобы понять, где находится потребительский спрос. Специалист также может совмещать выводы о местонахождении клиентов с информацией о демографической ситуации и доходах в этих местах на основании данных переписи населения. С помощью этих датасетов можно найти оптимальное место для нового магазина и создать презентацию Microsoft PowerPoint, чтобы представить рекомендации вице-президенту компании по коммерческой деятельности.

В другой ситуации та же розничная компания захочет увеличить объем онлайн-заказов с помощью персональных рекомендаций во время шоппинга. Дата-сайентист может загрузить статистику прежних онлайн-заказов и создать модель машинного обучения, которая будет учитывать набор товаров в корзине покупателя и на его основании прогнозировать, что еще ему можно предложить. После этого он будет работать с командой инженеров компании, чтобы каждый раз, когда клиент совершает покупки, новая модель МО показывала рекомендуемые товары.

При попытке освоить сферу DS многие люди сталкиваются с одной проблемой: слишком уж много нужно изучить. Например, программирование (но какой язык?), статистику (но какие методы наиболее важны на практике, а какие в основном академические?), машинное обучение (но чем оно отличается от статистики или ИИ?) и предметную область в той отрасли, в которой они хотят работать (но что, если вы не знаете, где хотите работать?). Кроме того, им необходимо овладеть бизнес-навыками вроде эффективной презентации результатов всем, начиная с других дата-сайентистов и заканчивая генеральным директором. А от вакансий, в которых требуется степень кандидата наук, многолетний опыт работы в Data Science и знание обширного перечня статистических и программных методов, становится только хуже. Как можно приобрести все эти навыки? С чего лучше начать? Что входит в базу?

Если вы изучали различные области DS, возможно, вы знакомы с популярной диаграммой Венна, составленной Дрю Конвеем. По мнению Конвея (на момент создания диаграммы), Data Science находится на пересечении математики и статистики, знаний предметной области и навыков хакинга (то есть программирования). Это изображение часто берется за основу для определения того, кто такой специалист по работе с данными. На наш взгляд, компоненты науки о данных немного отличаются от того, что предложил Дрю Конвей (рис. 1.1).





Рис. 1.1. Навыки, которые объединяются в DS, и то, как они сочетаются для выполнения разных функций

Мы изменили исходную диаграмму Венна, составленную Конвеем, на треугольник, потому что дело не в том, есть ли у вас навык или нет, а в том, что вы можете развить его лучше, чем другие специалисты. Действительно, все три навыка являются фундаментальными и вам необходимо владеть каждым в определенной степени, но вам не обязательно быть экспертом во всех. Мы поместили в треугольник разные типы специальностей в сфере Data Science. Они не всегда однозначно соответствуют названиям должностей, а даже если и так, то в разных компаниях их названия могут отличаться. Итак, что означает каждый из этих компонентов?

1.1.1. Математика/статистика

На начальном уровне математика и статистика являются базой в работе с данными. Мы разделяем эту базу на три уровня знания:

• Существование методов. Если вы не знаете о какой-либо возможности, вы не можете ее использовать. Если дата-сайентисту нужно сгруппировать похожих клиентов, знание того, что это можно сделать статистическим методом (с помощью кластерного анализа), станет первым шагом.

• Как применять методы. Специалист по работе с данными должен не просто знать много методов – он должен различать нюансы их применения. Важно писать такой код, где они не только применяются, но и настраиваются. Если дата-сайентист хочет использовать кластеризацию методом k-средних, чтобы сгруппировать покупателей, он должен уметь делать это на языке программирования типа R или Python. Также он должен понимать, как настроить параметры метода, например как выбрать количество создаваемых групп.

• Как выбрать подходящий метод. В DS используется огромное количество методов, поэтому для дата-сайентиста важно быстро оценить, какой из них будет самым эффективным в каждом случае. В нашем примере с группировкой покупателей, даже если специалист сосредоточился на кластеризации, он может применять десятки различных методов и алгоритмов. Вместо того чтобы перебирать все доступные методы, он должен сразу отбросить бо́льшую их часть и сосредоточиться всего на нескольких.

Эти типы навыков постоянно применяются в задачах по работе с данными. Приведем другой пример. Предположим, вы работаете в компании, занимающейся e-commerce. Ваш бизнес-партнер может поинтересоваться, в каких странах у вас самый большой средний чек. Это очень простой вопрос, если у вас есть готовые данные. Но вместо того, чтобы просто предоставить информацию и позволить партнеру делать выводы самостоятельно, вы можете копнуть глубже. Если у вас есть один заказ из страны А на $100 и тысяча заказов из страны Б средней стоимостью $75, то формально в стране А средний чек выше. Но можете ли вы с уверенностью сказать, что ваш бизнес-партнер должен вложиться в рекламу в стране А, чтобы увеличить количество заказов? Вряд ли. У вас есть только одна единица данных из этой страны, и она может оказаться статистически незначимой. А вот если бы у вас было 500 заказов из страны А, можно было бы протестировать разницу в стоимости заказов. Это значит, что, если бы эти показатели для стран А и Б действительно не различались, вы бы не получили прежний результат. В этом длинном примере дается оценка того, какие подходы были разумными, что следует учитывать и какие результаты были признаны несущественными.