Добавить в цитаты Настройки чтения

Страница 10 из 15

Ещё раз подчеркнём эту разницу методов на примере.

Если ученику предлагается описать на основе чувственных восприятий образец железа, то он описывает данное вещество не как конкретное, а как мысленно нерасчленённое единичное. Он может указать цвет, агрегатное состояние, «тяжесть», взвесив кусок на ладошке, то есть то, что воспринимает непосредственно органами чувств. Конкретным понятием знание о железе станет для ученика тогда, когда он опишет не только ощутимые, но и измеряемые физические и химические свойства, то есть поведение железа в различных реакциях, когда он установит связи между составом, строением и свойствами. В конкретном понятии железа ученик объединяет (синтезирует) все знания о железе.

Формирование и функционирование понятий в учебном познании

Сложность понятий определяет путь их формирования. Весь объём знаний понятия сразу усвоить невозможно. Оно формируется постепенно в течение длительного времени, на многих уроках. Рассмотрим для примера процесс формирования упоминавшегося выше понятия оксидов.

В процессе формирования понятий можно выделить четыре этапа:

1) введение в понятие;

2) формулировка определения понятия;

3) развитие понятия;

4) применение понятия.

1. Введение в понятие – это накопление таких знаний об исследуемом объекте, которые приведут к выделению сущности. На этом этапе важно активизировать те знания, которые явятся своеобразным «пьедесталом» для построения нового знания. Это соответствует природе работы мозга.

Дж. Брунер, исследуя психику человека, обнаруживает: «Восприятие предполагает акт категоризации. Фактически в эксперименте происходит следующее. Мы предъявляем субъекту соответствующий объект, а он отвечает путём отнесения воспринятого раздражителя к тому или иному классу вещей или событий. На этой основе только и могут строиться любые наши теоретические рассуждения» [18]. Из экспериментальных наблюдений психологов следует, что мозг, воспринимая новое знание, прежде всего ищет ответы на вопросы «что это? на что это похоже?». Ответ мозг получает, если находит соответствующее знание, усвоенное ранее, – опорное. Отсюда в дидактике опорным знаниям придаётся чрезвычайно важное значение.

И. Хофман в книге «Активная память» отмечает, что при восприятии объекта происходит установление соответствия между физическими параметрами воспринимаемого объекта и сохранившимися следами прежних восприятий в центральной нервной системе. И далее: «Только после того, как установлено такое соответствие, стимул (воздействующий на рецепторы предмет. – Л.К] приобретает значение и содержащаяся в нём информация получает интерпретацию. Информация о прошлых событиях составляет, таким образом, необходимую предпосылку для распознавания поступающей в данный момент информации» [154]. Можно сделать вывод: если информация о воспринимаемом объекте не находит хранящейся в памяти соответствующей информации, то не происходит и осознанного восприятия. Установление указанного соответствия является основой классифицирования объектов.

Таковы тонкие механизмы работы мозга, а способность к классификации является свойством мозга, заложенным самой природой. Это должно учитываться при формировании понятий в учебном процессе.

Подобные явления можно вычленить и в макропроцессах истории науки. Так, в химической науке до формирования понятий был длительный период накопления знаний о различных веществах. Накопленные знания постепенно трансформировались в систему, которая позволила произвести классификацию веществ по группам. Так, были выделены спирты, многие из которых оказались кислотами. В противоположность им выделены основания (оксиды, карбонаты, гидроксиды). В дальнейшем из этой группы были вычленены оксиды, существенным признаком которых стал бинарный состав.

Это был этап введения в понятие. Подобный этап должен быть и в учебном процессе. Это значит, что для введения в понятие необходимо найти опорные знания, которые помогут выйти на новое знание. В результате выводится новый термин, которым обозначаем понятие.

В учебном процессе введения понятия оксидов опорными знаниями являются изученные химические свойства кислорода, в частности образование оксидов. В свою очередь, получение знаний о свойствах кислорода опирается на знания о взаимодействии реакций соединения, в которые вступают простые вещества (синтез), и умения составлять уравнения таких реакций, а для этого учащиеся должны уметь составлять формулы оксидов.





2. Формулировка определения понятия. Второй этап заключается в формулировке определения понятия. Определения даются разными способами. Наиболее распространённой схемой является следующая: понятие – ближайший род – существенный признак. Эта схема показывает, какие знания должен получить учащийся для выведения определения. Формулировку определения оксидов школьники дают самостоятельно под руководством учителя [77, 78].

На ученических столах находится раздаточный материал: оксид меди(П), оксид магния, оксид железа(Ш), оксид кремния, в пробирках – оксид углерода(IV), вода, оксид азота(IV).

Образцы подобраны так, чтобы дети смогли отметить разнообразие свойств оксидов (агрегатное состояние, цвет, температура плавления).

Наблюдения школьники заносят в таблицу.

Таблица 1. Свойства оксидов

При анализе свойств оксидов нужно учесть, что человеческое сознание сначала воспринимает различия, затем сходство. В связи с этим сначала анализируем различающиеся свойства. Такими оказываются цвет, агрегатное состояние, температура плавления, строение. Затем учащиеся находят общий признак оксидов. Они отмечают, что оксиды состоят из двух элементов и в состав каждого оксида входят атомы кислорода. Эти признаки и будут существенными. В схеме определения понятия учащиеся отмечают:

понятие – ближайший род – существенный признак.

Учащиеся производят мысленные действия: сравнение, сопоставление, анализ, синтез – и реализуют схему:

оксиды – сложные бинарные вещества – содержащие атомы кислорода.

Произведя названные мысленные действия, учащиеся выводят формулировку определения понятия. Тем самым они сделали первый шаг в изучении понятия.

3. Развитие понятий. Формируется понятие при дальнейшем изучении химического материала. Учащиеся узнают всё новое и новое, синтезируя его с ранее полученным первоначальным знанием о понятии.

Понятие оксидов получает развитие при знакомстве с важнейшими классами неорганических веществ. Сначала дети отмечают, каким элементом образован оксид – металлом или неметаллом. В результате делят оксиды на оксиды металлов и оксиды неметаллов. Произошло первое мысленное разложение изучаемого объекта – анализ.

Далее изучают реакции взаимодействия оксидов неметаллов с водой с образованием кислоты. В копилку содержания понятия прибавляется знание о проявлении кислотных свойств оксидов неметаллов. Подобным образом школьники узнают о реакциях оксидов металлов с водой с образованием оснований, следовательно, об основных свойствах оксидов. Здесь прибавляется ещё один элемент знаний: не все оксиды могут взаимодействовать с водой. Позднее, когда будет изучена природа химической связи, они узнают, что прочность химической связи обусловливает немолекулярное строение и нерастворимость в воде.

Сопоставляя свойства воды как оксида в изученных реакциях, учащиеся обнаруживают двойственную природу оксидов – амфотерность.

При изучении групп элементов Периодической системы Д. И. Менделеева учащиеся знакомятся с конкретными оксидами. Так, при изучении серы прибавляются новые знания об оксидах. В оксидах серы степень окисления будет разной: в одном она равна +4, в другом – +6. Это определяет состав: соотношение числа атомов серы и кислорода в одном 1:2, в другом 1:3. Узнают о строении молекул этих оксидов. Помимо уже известных кислотных свойств эти оксиды проявляют окислительно-восстановительные свойства. Учащиеся связывают высокую степень окисления в триоксиде серы и приходят к выводу о проявлении окислительных свойств этого оксида. Устанавливают, что в диоксиде степень окисления серы +4 позволяет проявлять как окислительные, так и восстановительные свойства.