Добавить в цитаты Настройки чтения

Страница 8 из 9



Читая все эти труды, я понимал, что часть научного сообщества разделяет мое виденье проблемы. Вскоре я познакомился с работами Фукусимы и задумался о способах повышения эффективности нейронных сетей неокогнитрона. К счастью, ESIEE предоставлял студентам компьютеры, которые для того времени были очень мощными. Мы писали программы с Филиппе Метсу, школьным другом, любителем искусственного интеллекта, как и я, хотя его больше интересовала психология обучения детей. Преподаватели математики согласились заниматься с нами дополнительно. Вместе мы пытались моделировать нейронные сети. Но эксперименты отнимали очень много сил: компьютеры не тянули наши эксперименты, а написание программ было сплошной головной болью.

На четвертый год обучения в ESIEE, одержимый этим исследованием, я догадался о не совсем математически обоснованном правиле обучения многослойных нейронных сетей. Я представил алгоритм, который будет распространять сигналы в обратном направлении по сети, начиная с выходного слоя, чтобы обучать сеть от начала до конца. Я назвал этот алгоритм HLM (от Hierarchical Learning Machine)[18].

Я очень гордился своей идеей… HLM является предшественником алгоритма «обратного распространения градиента», который сегодня повсеместно используется для обучения систем глубокого обучения. Вместо распространения обратных градиентов в сети, как это происходит сегодня, HLM распространял желаемые состояния для каждого нейрона. Это позволяло использовать бинарные нейроны, что являлось преимуществом, учитывая медлительность компьютеров того времени для выполнения умножения. HLM был первым шагом в обучении многоуровневых сетей.

Коннекционистские модели обучения

Летом 1983 г. я получил высшее образование по специальности «инженер». Тогда же я наткнулся на книгу, в которой рассказывалось о работе небольшой группы французов, интересующихся самоорганизующимися системами и сетями автоматов. Они экспериментировали в бывшем помещении Политехнической школы на холме Святой Женевьевы в Париже. Эта лаборатория сетевой динамики (Laboratoire de dynamique de réseau, или LDR) была независимой, хотя ее члены занимали должности в разных высших учебных заведениях. У них было мало денег, не было планового бюджета, а их компьютер нуждался в ремонте. Это означало, что исследования машинного обучения во Франции висят на волоске! Я решил примкнуть к ним. Я мог реально помочь им, потому что эти ученые не занимались изучением старых публикаций по нейронным сетям, как это делал я.

Я решил объяснить им, что меня интересует эта тема и что в своей инженерной школе я занимаюсь схожей тематикой. Я работал в их группе, продолжая учебу в аспирантуре в Университете Пьера и Марии Кюри. В 1984 г. мне нужно было подать заявление на защиту докторской диссертации. Я занимал должность младшего научного сотрудника ESIEE по гранту, но мне нужно было найти себе научного руководителя. Много времени я работал с Франсуазой Фогельман-Суле (сейчас Сули-Фогельман), которая в то время преподавала компьютерные науки в Университете Париж-V и, по логике вещей, именно она должна была бы курировать мою диссертацию, но у нее не было на это полномочий, поскольку она еще не прошла государственную сертификацию на право руководить аспирантами (необходимую во многих европейских странах).

Поэтому я обратился к единственному члену лаборатории, который мог курировать диссертацию по информатике, – Морису Милграму, профессору информатики и инженерии Технологического университета Компьена. Он согласился, но дал понять, что не сможет мне сильно помочь, потому что ничего не знает о нейронных сетях, но я и так был безмерно благодарен ему за эту помощь. Поэтому я посвятил свое время одновременно ESIEE (и ее мощным компьютерам) и LDR (и ее интеллектуальной среде). Я попал на ранее неизвестную мне территорию, и это было интересно.

За рубежом исследования, близкие к моим, набирали обороты. Летом 1984 г. я сопровождал Франсуазу Фогельман в Калифорнию, где прошел месячную стажировку в известной многим лаборатории Xerox PARC.

В то время, я помню, в мире было два человека, с которыми я мечтал встретиться: Терри Сейновски – биофизик и нейробиолог из Университета Джона Хопкинса в Балтиморе, и Джеффри Хинтон из Университета Карнеги-Меллон в Питтсбурге – тот самый, кто поделит с Йошуа Бенджио и мной Премию Тьюринга в 2019 г. В 1983 г. Хинтон и Сейновски опубликовали статью о машинах Больцмана[19], которая содержит процедуру обучения сетей со «скрытыми нейронами», то есть нейронами в промежуточных слоях между входом и выходом. Я увлекся этой статьей именно потому, что в ней говорилось об обучении многослойных нейронных сетей. «Главный» вопрос в моей работе! Эти люди сыграли важную роль в моей жизни!

Лез-Уш

Моя профессиональная жизнь изменилась в феврале 1985 г. во время конференции в Лез-Уш, в Альпах. Там я встретился с лучшими представителями мировой науки, интересующимися нейронными сетями: физиками, инженерами, математиками, нейробиологами, психологами и, в частности, членами новой развивающейся исследовательской группы в области нейронных сетей, которая сформировалась внутри легендарной лаборатории Bell Labs. Через три года я попал в эту группу благодаря знакомствам, которые приобрел в Лез-Уш.

Встреча была организована теми французскими исследователями из LDR, с которыми я уже работал: Франсуазой, ее тогдашним мужем Жераром Вайсбухом, профессором физики ENS, и Эли Биненштоком – нейробиологом-теоретиком, работавшим в то время в CNRS. Конференция собрала вместе физиков, интересующихся «спиновыми стеклами», а также ведущих физиков и нейробиологов.



Спин – это свойство элементарных частиц и атомов, которое можно описать по аналогии с маленькими магнитами, с обращенными вверх или вниз полюсами. Эти два значения спина можно сравнить с состояниями искусственного нейрона: он либо активен, либо неактивен. Он подчиняется тем же уравнениям. Спиновые стекла представляют собой своего рода кристалл, в котором примесные атомы имеют магнитный момент. Каждый спин взаимодействует с другими спинами на основе связанных весовых показателей.

Если весовой коэффициент положительный, они, как правило, выстраиваются в одном направлении. Если вес отрицательный, они противопоставляются. Мы связываем значения +1 со спином «вверх», а –1 со спином «вниз». Каждый примесный атом принимает ориентацию, которая является функцией взвешенной суммы ориентаций соседних примесных атомов. Другими словами, функция, определяющая, будет ли спин идти вверх или вниз, аналогична функции, которая делает искусственный нейрон активным или неактивным.

После основополагающей статьи Джона Хопфилда[20], в которой были описаны аналогии между спиновыми стеклами и искусственными нейронными сетями, многие физики начали интересоваться и самими сетями, и их обучением – темами, по-прежнему не приветствовавшимися их коллегами – инженерами и компьютерщиками.

В Лез-Уш я был одним из самых молодых исследователей, и мне пришлось общаться на английском языке о многоуровневых сетях и алгоритме HLM, моем предшественнике алгоритмов обратного распространения. Я только начал подготовку своей диссертации, и нервничал, выступая перед столь именитой аудиторией.

Меня особенно привлекли две личности: Ларри Джекел, глава отдела Bell Labs (позже мне самому довелось работать в этом отделе) и Джон Денкер – настоящий ковбой из Аризоны: джинсовый костюм, большие бакенбарды, ковбойские сапоги… Этот не очень похожий на ученого человек, только что защитивший диссертацию, был невероятно уверен в себе! Когда на него находило вдохновение, он мог быть чертовски убедителен и изобретательно отстаивал свою точку зрения, причем без агрессии и часто вполне обоснованно. Франсуаза Фогельман говорила мне: «У ребят из Bell Labs огромное преимущество. Когда вы только хотите сделать что-то новое, то выясняется, что это либо уже было сделано в Bell Labs десять лет назад, либо это просто не работает». Черт возьми!

18

См. главу 5 «Мой HLM!».

19

Машиной Больцмана называется один из видов нейронных сетей. – Прим. ред.

20

John J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences, 1982, 79 (8), p. 2554–2558, DOI:10.1073/pnas.79.8.2554.