Добавить в цитаты Настройки чтения

Страница 7 из 11



Механические характеристики некоторых неметаллических материалов и пластмасс приведены в табл. 2.2. Табл. 2.3. иллюстрирует стойкость защитных покрытий и мембран в агрессивных средах.

В табл. 2.4. и 2.5. указаны области применения арматуры из полипропилена и пентапласта БГ 1, используемых при различных коррозионных рабочих средах.

Табл. 2.2. Механические свойства некоторых неметаллических материалов и пластмасс, применяемых при изготовлении арматуры

Табл. 2.3. Материалы защитных покрытий и мембран запорных и регулирующих мембранных клапанов, применяемых при различных агрессивных средах

Табл. 2.4. Рабочие среды, при которых применима арматура из полипропилена

Табл. 2.5. Рабочие среды, при которых применима арматура из пентапласта БГ1

С и н т е т и ч е с к и е к а у ч у к и, называемые эластомерами или резинами, широко используются для изготовления уплотнительных деталей. Например, в золотниках предохранительных клапанов для природного газа после нескольких конструктивных доработок, вызванных негерметичностью на рабочей среде, содержащей песок и другие включения, были установлены уплотнительные кольца из высокомолекулярного уретанового синтетического каучука – полипропилена. Уплотнения успешно выдержали испытания. Из синтетических каучуков изготавливают уплотнительные кольца, вкладыши дисковых поворотных затворов, диафрагмы запорных и регулирующих клапанов.

Одной из важных проблем пластмасс является ограниченный температурный диапазон применения, рис. 2.5. В настоящее время он ограничивается примерно 2000С с учетом запаса до температуры размягчения.

Рис. 2.5. Температурный диапазон применения основных типов пластмасс в уплотнениях и седлах.

Некоторые свойства полимеров, применяемых для шаровых кранов приведены в табл.2.6.

Табл. 2.6. Свойства некоторых полимеров для седел шаровых кранов [3]

Здесь же приведены и корреляции между основными свойствами материалов и свойствами уплотнений, требуемыми в эксплуатации

Табл. 2.7. Корреляции между свойствами полимерных материалов и эксплуатационными параметрами уплотнений

Выбор материалов из пластика для деталей арматуры представляет собой определенные трудности. Так, например, для уплотнений шаровых затворов могут быть предложены материалы из термопластика или термореактивы.

Сравнение термореактивных и термопластичных полимерных композиционных материалов относительно изготовления изделия «Уплотнение шарового затвора» показывает, что по сравнению с термопластами термореактивы обладают следующими основными недостатками:

1. Большая усадка и, как следствие, невозможность изготовления изделий высокой точности. В отличие от термопластов эта усадка не может быть скомпенсирована при переработке на этапе выдержки под давлением;

2. Меньшая средняя рабочая температура до 2500С, обусловленная отсутствием кристаллической фазы;

3. Большая себестоимость изготовления и меньшая производительность, обусловленная более длительным циклом полимеризации;

4. Большая вероятность появления в процессе изготовления различных дефектов (пор, микротрещин вследствие выделения летучих соединений при полимеризации), что приводит к значительному разбросу получаемых характеристик;



5. Как правило, большая токсичность;

6. Ограниченный срок хранения полуфабрикатов при наличии определенных условий хранения (температура хранения);

7. Отсутствие возможности последующей доработки изделия (например, сварки) вследствие отсутствия возможности размягчения при повторном нагреве.

В этой связи, современные тенденции по внедрению полимерных композитов ориентированы на термопластичные материалы. Тем не менее, полностью исключать из рассмотрения термореактивы тоже нельзя, поскольку, несмотря на все описанные недостатки, у них есть и определенные достоинства. Окончательное решение по типу принимаемых материалов принимается исходя из комплексного и всестороннего взгляда на конкретную инженерную задачу.

Пример. Одной из актуальных задач повышения износостойкости и снижения энергопотребления приводами арматуры является уменьшение теплового расширения полимера в широком диапазоне эксплуатационных температур. Это связано с тем, что существует явно противоречие: для повышения надежности герметичного соединения приходится завышать размеры посадочного натяга, тогда как при повышенных температурах, этот натяг является источником износа, задиров седел и энергопотерь на преодоление сопротивления. При этом учитывая, что седло является сопрягаемой деталью, им часто жертвуют не только с точки зрения повышения истираемости из-за завышенных размеров при тепловом расширении, но и собственной механо и термодеструкции (т.н. seat jam), когда седло вспучивается из-за стесненной деформации в сторону шара и происходит заклинивание.

Решением является применение полимеров с низким коэффициентов теплового расширения. Для этого в настоящее время используются полимеры с наполнителями, например, стекловолокном, резко снижающим расширение полимера с ростом температуры, рис.2.6.

Рис. 2.6. Изменение коэффициента линейного напряжения различных полимеров при использовании стекловолокна в качестве наполнителя [2].

Задачи сегодняшней инженерии контактных поверхностей решаются при помощи системного выбора материалов для арматуры. При этом исходят из многих факторов. Кроме механических свойств, антифрикционности, износостойкости, термостойкости в последнее время ими становятся такие показатели как термостабильность, низкий коэффициент линейного расширения и др. Пока еще неучитываемыми свойствами являются:

– учет плотности полимеров,

– работоспособность при тепловом старении при длительной эксплуатации,

– способность к влагопоглощению,

– учет упругих свойств при сжатии и циклировании давления и температуры, включая собственные пульсации давления и температуры среды в трубопроводе,

– коэффициент износа,

– количество циклов,

– твердость поверхности и пр.

– динамический коэффициент трения.

– изменение диэлектрической проницаемости и поверхностного и объемного удельного электрического сопротивления и электропроводности в газовой и взрывоопасной среде.

Эти специфические свойства в большой степени отвечают требованиям испытаний, которые должны проводиться для седел арматуры. Ряд примеров построения таблиц в зависимости от требований к свойствам приведен ниже, табл.2.8: