Страница 3 из 11
Применяются различные конструкторские решения – многокаскадное дросселирование, дробление струи для гашения энергии (перфорированные или клеточные рабочие органы).
Раздел 2. Материалы для изготовления уплотнений
2.1. Кратко о полимерах
Полимеры – это вещества, макромолекулы которых состоят из многочисленных элементарных звеньев – мономеров одинаковой структуры. Их молекулярная масса может составлять от 5000 до 1000000 ед. Полимеры состоят из цепочек из отдельных звеньев, что задает гибкость, но она ограничена размерами элементов и жесткостью звеньев.
Сцепление полимеров обеспечивается степенью жесткости связей. Так, основные атомные цепи обладают жесткой ковалентной связью, с энергией связи до 330 кДж/моль. Межмолекулярные цепи по своей физической природе обладают водородной связью на основе притяжения молекул водорода и когезии. Энергия связи составляет от 5 до 40 КДж/моль.
Полимеры построены из одинаковых по структуре звеньев. Сополимеры состоят из разнородных звеньев. Одним из свойств полимерной структуры является стереорегулярность – это свойство правильного расположения звеньев в пространстве. Это свойство определяет повышенные свойства полимеров.
КЛАССИФИКАЦИЯ ПОЛИМЕРОВ
Полимеры делятся:
1. по составу
2. по форме макромолекул
3. по фазовому состоянию
4. по полярности
5. по отношению к нагреву.
По составу полимеры делятся на органические, элементоорганические и неорганические.
Органические полимеры наиболее используемы, их основная цепь образована углеродными атомами (карбоцепные полимеры). В гетерогенных полимерах связь образована кислородом, фосфором и хлором. Кислород придает связи гибкость, фосфор и хлор – огнестойкость, сера – газонепроницаемость, фтор – химическую стойкость
Элементоорганические полимеры – это полимеры, основная цепь которых образована атомами кремния, титана, алюминия с группами СН3, СН6, СН2. Металлы придают полимеру теплостойкость как карбонильные группы – эластичность. В основном используются кремнийорганические полимеры.
Неорганические полимеры – это силикатные стекла, керамика, слюда, асбест и др. Их основу составляют оксиды кремния, алюминия, магния, кальция и др. Внутриатомная связь – ковалентная, цепи между собой образуют ионную связь. Этот вид полимеров обладает высокой плотностью, длительной теплостойкостью, но и высокой хрупкостью. Характерный представитель – силикаты.
Смешанные полимеры – это класс композитов. Характерный представитель – стеклопластик.
По форме линейные полимеры делятся на линейные, разветвленные, плоские, ленточные (лестничные) и пространственные (сетчатые). Виды полимеров по форме приведены ниже, рис.2.1.
Рис. 2.1. Формы линейных полимеров
Линейные полимеры образуют прочную связь вдоль цепи и имеют слабую межмолекулярную связь. Это придает им высокую эластичность, способность размягчаться и затвердевать. Характерный представитель – полиамиды. Виды
Лестничные полимеры имеют более жесткую цепь, что придает им свойство повышенной теплостойкости, жесткости и малой растворимости.
Пространственные полимеры образуются при сшивке макромолекул. Они не плавятся и не растворяются, обладают высокой упругостью. Делятся на редкосетчатые – имеющие высокую упругость (мягкие резины), густосетчатые, имеющие высокую твердость и теплостойкость. К ним относятся большинство конструкционных пластиков. К паркетным полимерам относится графит.
По фазовому состоянию полимеры делятся на аморфные и кристаллические. Для кристаллических полимеров характерно появление надмолекулярных структур.
Аморфные полимеры однофазны, собраны из цепных молекул в пачки, которые состоят из многих рядов макромолекул. Они способны перемещаться.
Глобулы – это свернутые в клубки цепи, они имеют невысокие свойства, для них характерна хрупкость по границам зерен из-за недостаточной связи.
Кристаллические полимеры образуются из гибких регулярных структур при фазовом переходе внутри пачки и формируют пространственные решетки кристаллов.
Образование кристаллической структуры происходит следующим образом:
1. складывание гибких пачек в ленты
2. соединение лент друг с другом с образованием пластин
3. наслоение пластин друга на друга с образованием правильных структур.
Рис. 2.2. Образование полимера полистирола из мономера
Сферолиты образуются при затрудненном образовании объемных кристаллов из меньших структур. Происходит чередование кристалличных и аморфных участков в виде лучей.
Рис. 2.3. Сферолиты с образованием из пластин. Масштаб – несколько мкм.
Свойствами кристаллических структур являются организованность, термодинамическая стабильность, большое время жизни без нагрузки.
Обычно в полимерах встречается двухфазная структура. Кристалличность придает ей жесткость, твердость и теплостойкость. Однако, надмолекулярные структуры при длительном хранении, эксплуатации или переработке подвержены изменениям и распаду.
По полярности полимеры делятся по наличию диполей центров распределения положительного или отрицательного зарядов. Условиями образования полярности являются:
1. наличие полярных связей (-Cl, – F, +OH)
2. несимметрия в структуре по силе связей: C-H < C-N < C-O < C-F< C-Cl.
Неполярные полимеры, как правило, углеводороды, являются диэлектриками и обладают морозостойкостью. Полярные полимеры обладают жесткостью, теплостойкость, но низкой морозостойкостью.
По отношению к нагреву полимеры делятся на термопластичные и термореактивные.
Термопластичные полимеры размягчаются при нагреве, плавятся и затвердевают обратимо. Они имеют линейную или разветвленную структуру.
Термореактивные полимеры сначала линейны и размягчаются. Затвердевают из-за химических реакций с образованием пространственной структуры и остаются твердыми в термостабильном состоянии.
ОСОБЕННОСТИ СВОЙСТВ ПОЛИМЕРНЫХ МАТЕРИАЛОВ
Особенности полимерных материалов
1. неспособность переходить в газовую фазу из-за высокой молекулярной массы
2. полидисперсность – она определяет значительный разброс механических свойств
3. зависимость от структуры и эксплуатационных условий.
Полимеры могут находиться в нескольких основных состояниях:
Стеклообразное – это твердое, аморфное состояние, где колебания атомов происходят без колебания цепей.
Высокоэластичное – обратимое изменение формы при небольших нагрузках, происходит из-за изгиба макромолекул
Вязкотекучее – жидкое состояние с высокой вязкостью, при котором подвижна вся макромолекула. Состояние вязкотекучести определяется по термомеханическим кривым.
Для пространственных полимеров характерно стеклообразное состояние. Для редкосетчатых полимеров характерно стеклообразное и высокоэластичное в вязкотекучем состоянии. Характерным является область упругих деформаций и после превышения предела вынужденной эластичности. При небольших напряжениях происходит перемещение отдельных сегментов макромолекул и их ориентация в направлении действующей силы. Так, в резинах узлы сетки препятствуют перемещению полимерных цепей. Происходит переход в высокоэластичное состояние до химического разложения без вязкотекучести.