Добавить в цитаты Настройки чтения

Страница 3 из 11



Применяются различные конструкторские решения – многокаскадное дросселирование, дробление струи для гашения энергии (перфорированные или клеточные рабочие органы).

Раздел 2. Материалы для изготовления уплотнений

2.1. Кратко о полимерах

Полимеры – это вещества, макромолекулы которых состоят из многочисленных элементарных звеньев – мономеров одинаковой структуры. Их молекулярная масса может составлять от 5000 до 1000000 ед. Полимеры состоят из цепочек из отдельных звеньев, что задает гибкость, но она ограничена размерами элементов и жесткостью звеньев.

Сцепление полимеров обеспечивается степенью жесткости связей. Так, основные атомные цепи обладают жесткой ковалентной связью, с энергией связи до 330 кДж/моль. Межмолекулярные цепи по своей физической природе обладают водородной связью на основе притяжения молекул водорода и когезии. Энергия связи составляет от 5 до 40 КДж/моль.

Полимеры построены из одинаковых по структуре звеньев. Сополимеры состоят из разнородных звеньев. Одним из свойств полимерной структуры является стереорегулярность – это свойство правильного расположения звеньев в пространстве. Это свойство определяет повышенные свойства полимеров.

КЛАССИФИКАЦИЯ ПОЛИМЕРОВ

Полимеры делятся:

1. по составу

2. по форме макромолекул

3. по фазовому состоянию

4. по полярности

5. по отношению к нагреву.

По составу полимеры делятся на органические, элементоорганические и неорганические.

Органические полимеры наиболее используемы, их основная цепь образована углеродными атомами (карбоцепные полимеры). В гетерогенных полимерах связь образована кислородом, фосфором и хлором. Кислород придает связи гибкость, фосфор и хлор – огнестойкость, сера – газонепроницаемость, фтор – химическую стойкость

Элементоорганические полимеры – это полимеры, основная цепь которых образована атомами кремния, титана, алюминия с группами СН3, СН6, СН2. Металлы придают полимеру теплостойкость как карбонильные группы – эластичность. В основном используются кремнийорганические полимеры.

Неорганические полимеры – это силикатные стекла, керамика, слюда, асбест и др. Их основу составляют оксиды кремния, алюминия, магния, кальция и др. Внутриатомная связь – ковалентная, цепи между собой образуют ионную связь. Этот вид полимеров обладает высокой плотностью, длительной теплостойкостью, но и высокой хрупкостью. Характерный представитель – силикаты.

Смешанные полимеры – это класс композитов. Характерный представитель – стеклопластик.

По форме линейные полимеры делятся на линейные, разветвленные, плоские, ленточные (лестничные) и пространственные (сетчатые). Виды полимеров по форме приведены ниже, рис.2.1.

Рис. 2.1. Формы линейных полимеров

Линейные полимеры образуют прочную связь вдоль цепи и имеют слабую межмолекулярную связь. Это придает им высокую эластичность, способность размягчаться и затвердевать. Характерный представитель – полиамиды. Виды

Лестничные полимеры имеют более жесткую цепь, что придает им свойство повышенной теплостойкости, жесткости и малой растворимости.

Пространственные полимеры образуются при сшивке макромолекул. Они не плавятся и не растворяются, обладают высокой упругостью. Делятся на редкосетчатые – имеющие высокую упругость (мягкие резины), густосетчатые, имеющие высокую твердость и теплостойкость. К ним относятся большинство конструкционных пластиков. К паркетным полимерам относится графит.

По фазовому состоянию полимеры делятся на аморфные и кристаллические. Для кристаллических полимеров характерно появление надмолекулярных структур.

Аморфные полимеры однофазны, собраны из цепных молекул в пачки, которые состоят из многих рядов макромолекул. Они способны перемещаться.

Глобулы – это свернутые в клубки цепи, они имеют невысокие свойства, для них характерна хрупкость по границам зерен из-за недостаточной связи.

Кристаллические полимеры образуются из гибких регулярных структур при фазовом переходе внутри пачки и формируют пространственные решетки кристаллов.



Образование кристаллической структуры происходит следующим образом:

1. складывание гибких пачек в ленты

2. соединение лент друг с другом с образованием пластин

3. наслоение пластин друга на друга с образованием правильных структур.

Рис. 2.2. Образование полимера полистирола из мономера

Сферолиты образуются при затрудненном образовании объемных кристаллов из меньших структур. Происходит чередование кристалличных и аморфных участков в виде лучей.

Рис. 2.3. Сферолиты с образованием из пластин. Масштаб – несколько мкм.

Свойствами кристаллических структур являются организованность, термодинамическая стабильность, большое время жизни без нагрузки.

Обычно в полимерах встречается двухфазная структура. Кристалличность придает ей жесткость, твердость и теплостойкость. Однако, надмолекулярные структуры при длительном хранении, эксплуатации или переработке подвержены изменениям и распаду.

По полярности полимеры делятся по наличию диполей центров распределения положительного или отрицательного зарядов. Условиями образования полярности являются:

1. наличие полярных связей (-Cl, – F, +OH)

2. несимметрия в структуре по силе связей: C-H < C-N < C-O < C-F< C-Cl.

Неполярные полимеры, как правило, углеводороды, являются диэлектриками и обладают морозостойкостью. Полярные полимеры обладают жесткостью, теплостойкость, но низкой морозостойкостью.

По отношению к нагреву полимеры делятся на термопластичные и термореактивные.

Термопластичные полимеры размягчаются при нагреве, плавятся и затвердевают обратимо. Они имеют линейную или разветвленную структуру.

Термореактивные полимеры сначала линейны и размягчаются. Затвердевают из-за химических реакций с образованием пространственной структуры и остаются твердыми в термостабильном состоянии.

ОСОБЕННОСТИ СВОЙСТВ ПОЛИМЕРНЫХ МАТЕРИАЛОВ

Особенности полимерных материалов

1. неспособность переходить в газовую фазу из-за высокой молекулярной массы

2. полидисперсность – она определяет значительный разброс механических свойств

3. зависимость от структуры и эксплуатационных условий.

Полимеры могут находиться в нескольких основных состояниях:

Стеклообразное – это твердое, аморфное состояние, где колебания атомов происходят без колебания цепей.

Высокоэластичное – обратимое изменение формы при небольших нагрузках, происходит из-за изгиба макромолекул

Вязкотекучее – жидкое состояние с высокой вязкостью, при котором подвижна вся макромолекула. Состояние вязкотекучести определяется по термомеханическим кривым.

Для пространственных полимеров характерно стеклообразное состояние. Для редкосетчатых полимеров характерно стеклообразное и высокоэластичное в вязкотекучем состоянии. Характерным является область упругих деформаций и после превышения предела вынужденной эластичности. При небольших напряжениях происходит перемещение отдельных сегментов макромолекул и их ориентация в направлении действующей силы. Так, в резинах узлы сетки препятствуют перемещению полимерных цепей. Происходит переход в высокоэластичное состояние до химического разложения без вязкотекучести.