Добавить в цитаты Настройки чтения

Страница 2 из 4



•             Нагрузки: переменные коэффициенты, используемые для определения компонента.

•             Визуализация образца: представление образцов, проецируемых в небольшом пространстве, охватываемом (определяемом) компонентами. Координаты образцов определяются значениями или вычисленными баллами компонентов.

•             Изображение круга корреляции: представление переменных в пространстве, охватываемом компонентами. Каждая переменная координата определяется как корреляция между исходным переменным значением и каждым компонентом. Диаграмма с корреляционным кругом позволяет визуализировать корреляцию между переменными – отрицательную или положительную корреляцию, определяемую косинусом угла между центром круга и каждой переменной точкой, а также вклад каждой переменной в каждый компонент, определяемый абсолютным значением координат по каждому компоненту. Для такого толкования данные должны быть сосредоточены и масштабированы, что подразумевается по умолчанию в большинстве методов, за исключением PCA. Подробная информация об этом наглядном представлении информации будет представлена в соответствующем разделе ниже.

•             Неконтролируемый анализ: метод, который не учитывает какие-либо известные группы выборки, является исследовательским. Примерами неконтролируемых методов являются – метод главных компонент (PCA), метод проекций на скрытые структуры (PLS), а также канонический анализ корреляции (CCA).

•             Контролируемый анализ: метод включает вектор, указывающий на принадлежность класса в каждой выборки. Цель его состоит в том, чтобы различать выборочные группы и выполнять прогнозирование для класса выборки. Примерами контролируемых методов являются дискриминантный анализ проекций на скрытые компоненты (PLS-DA), анализ интеграции данных для обнаружения маркеров с использованием скрытых компонентов (DIAB), а также многомерный интегративный метод определения воспроизводимых сигнатур в независимых экспериментах на разных платформах (MINT).

Перечень широко используемых методов mixOmics, которые будут подробно описаны в соответствующих главах ниже, за исключением CCA и MINT, можно представить следующей таблицей типов и объема данных, который они могут обрабатывать:

Методы, реализованные в mixOmics, подробно описаны в разных публикациях, обширный список которых постоянно пополняется и может быть найден в открытых источниках.

В следующей таблице приведён список методов mixOmics, наличие разрежения в которой указывает на методы, предполагающие осуществление выбора переменных:

Основные функции и параметры каждого метода сведены в следующей таблице:

Каждый раздел, посвященный описанию того или иного метода, излагается по следующему плану:

1. Тип педагогического вопроса, на который нужно ответить.

2. Краткое описание иллюстративного набора данных.

3. Принцип метода.

4. Быстрый запуск метода с основными функциями и аргументами.

5. Чтобы идти дальше: настраиваемые опции, дополнительные графические построения и настройки параметров.

6. Вопросы и ответы.

Глава 1. Первые шаги

Как путь в тысячу миль начинается с первого шаг, так и использование любого пакета R начинается с его установки. Во-первых, можно скачать последнюю версию mixOmics  от Bioconductor следующей командой:

if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("mixOmics")

Кроме того, можно установить последнюю версию пакета с GitHub, но для этого понадобится предварительная установка пакета remotes:

BiocManager::install("remotes")

BiocManager::install("mixOmicsTeam/mixOmics")

Пакет mixOmics напрямую импортирует следующие пакеты: igraph, rgl, ellipse, corpcor, RColorBrewer, plyr, parallel, dplyr, tidyr, reshape2, methods, matrixStats, rARPACK, gridExtra. Если возникнут затруднения при установке пакета rgl, то нужно будет дополнительно установить программное обеспечение X'quartz.

Загрузить установленный пакет можно следующей командой:

library(mixOmics)



Убедитесь, что при загрузке пакета не возникло ошибки, особенно для упомянутой выше библиотеки rgl. В примерах, которые будут приведены далее, используются данные, являющиеся частью пакета mixOmics. Чтобы загрузить свои собственные данные, проверьте установлен ли рабочий каталог, а затем считайте данные из формата .txt    или .csv, либо с помощью пункта меню импортирования данных в RStudio, либо через одну из следующих командных строк:

# из файла csv

data <– read.csv("имя_файла.csv", row.names = 1, header = TRUE)

# из файла txt

data <– read.table("имя_файла.txt", header = TRUE)

Для получения более подробной информации о аргументах, используемых для настройки параметров этих функций, введите ?read.csv или ?read.table в консоли R.

Каждый анализ должен выполняться в следующем порядке:

1. Запустите выбранный метод анализа.

2. Выполните графическое представление образцов.

3. Выполните графическое представление переменных.

Затем используйте критическое мышление и дополнительные функции инструментов визуализации, чтобы разобраться в полученных данных. Некоторые из вспомогательных инструментов будут описаны в следующих главах.

Например, для анализа основных компонентов сначала загружаем данные:

My_table <– structure(list(Класс = c("7а", "7а", "7а", "7а", "7а", "7а", "7а", "7а", "7а",

"7а", "7б", "7б", "7б", "7б", "7б", "7б", "7б", "7б", "7б", "7б", "эталон", "отстающий"),

`Фимилия Имя` = c("Иванов Иван", "Петров Петр", "Сидоров Сидор", "Егоров Егор",

"Романов Роман", "Николаев Николай", "Григорьев Григогий", "Викторов Виктор",

"Михайлов Михаил", "Тимуриев Тимур", "Ульянова Ульяна", "Ольгина Ольга",

"Людмилова Людмила", "Дарьева Дарья", "Кристинина Кристина",

"Натальина Наталья", "Глафирова Глафира", "Янина Яна", "Иринова Ирина",

"Валентинова Валентина", "Идеальный ученик", "Другая крайность"), Тема1 = c(5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1), Тема2 = c(2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 4, 5, 5, 4, 4, 4, 5, 5, 4, 5, 5, 1), Тема3 = c(1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 5, 1), Тема4 = c(4, 5, 5, 4, 4, 4, 5, 5, 5, 4, 5, 5, 4, 4, 5, 5, 4, 4, 5, 4, 5, 1), `Тема 5` = c(1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 5, 5, 1), `№№` = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22)), row.names = c(NA, -22L), class = c("tbl_df", "tbl", "data.frame"))

Затем выполним следующие шаги:

My_result.pca <– pca(My_table) # 1 Запуск выбранного метода анализа

plotIndiv(My_result.pca) # 2 Визуальное представление образцов

plotVar(My_result.pca) # 3 Визуальное представление переменных

Это только первый пример, в дальнейшем появится много вариантов, из которых можно будет выбрать, наиболее соответствующий стоящим перед вами исследовательским задачам статистического анализа. Пакет mixOmics предлагает различные методы представления переменной и широкий выбор функций сбора информации на довольно больших наборах данных.