Добавить в цитаты Настройки чтения

Страница 5 из 9



Затем он взломал код Вселенной, обнаружив, что любое движение всегда происходит бесконечно малыми шагами и в любой момент описывается законами, изложенными на языке анализа. С помощью всего лишь горстки дифференциальных уравнений (законы движения и всемирного тяготения) Ньютон смог объяснить все, от траектории пушечного снаряда до орбит планет. Его потрясающая «система мира» объединила небеса и землю, положив начало просвещению и изменив западную культуру. Его влияние на философов и поэтов Европы было колоссальным. Как мы увидим, оно распространилось даже на Томаса Джефферсона и Декларацию независимости. В наше время идеи Ньютона положены в основу космических программ, предоставляя математику, необходимую для расчета траекторий, – работы, проделанной в NASA афроамериканским математиком Кэтрин Джонсон и ее коллегами (героини книги и фильма «Скрытые фигуры»).

После того как загадки кривых и движения были решены, анализ перешел к третьей великой одержимости: загадке изменений. Пусть это и клише, но от этого оно не менее истинно: нет ничего постоянного, все меняется. Сегодня дождливо, а завтра солнечно. Рынок акций растет и падает. Воодушевленные ньютоновскими взглядами, последующие поколения специалистов по анализу задались вопросом: есть ли законы изменений, аналогичные ньютоновским законам движения? Существуют ли законы роста населения, распространения эпидемий и кровотока в артериях? Можно ли использовать анализ для описания того, как электрические сигналы распространяются по нервам, или для предсказания транспортного потока на автостраде?

Следуя этой амбициозной программе, в постоянном сотрудничестве с другими областями науки и технологии, анализ помог создать современный мир. С помощью наблюдений и экспериментов ученые установили законы изменений, а затем использовали анализ для решений задач и составления прогнозов. Например, в 1917 году Альберт Эйнштейн применил анализ к простой модели атомных переходов и предсказал замечательный эффект под названием вынужденное излучение[25] (этот термин обозначают буквы s и e в слове laser, которое представляет собой аббревиатуру, образованную от слов light amplification by stimulated emission of radiation[26]). Эйнштейн предположил, что при определенных обстоятельствах фотоны, проходящие через вещество, могут индуцировать появление других фотонов с той же длиной волны, движущихся в том же направлении. Получается своего рода цепная реакция, которая может дать мощный когерентный луч. Спустя несколько десятилетий предсказание сбылось. Первые действующие лазеры были созданы в начале 1960-х. С тех пор они используются везде – от проигрывателей компакт-дисков и оружия с лазерным наведением до сканеров штрих-кодов в супермаркетах и медицинских лазеров.

Законы изменений в медицине не так понятны, как в физике. Тем не менее даже в случае элементарных моделей анализ может внести свой вклад в спасение жизней. Например, в главе 8 мы увидим, как модель, использующая дифференциальное уравнение, разработанная иммунологом и исследователем СПИДа, сыграла свою роль в создании комбинированной терапии из трех препаратов для лечения пациентов с ВИЧ. Идеи, подсказанные моделью, опровергли распространенную точку зрения, что вирус в организме бездействует; на самом деле он ожесточенно сражается с иммунной системой каждую минуту каждого дня. Благодаря новому пониманию, предоставленному анализом, ВИЧ-инфекция превратилась из почти неизбежного смертного приговора в управляемое хроническое заболевание – по крайней мере для тех, кто имеет доступ к комбинированной лекарственной терапии.

Общепризнанно, что некоторые аспекты нашего вечно меняющегося мира лежат за пределами приближений и моделирования, характерных для принципа бесконечности. Например, в мире субатомных частиц физики не могут представлять электрон как классическую частицу, которая движется по какой-то линии подобно планете или пушечному ядру. Согласно квантовой механике, на таком микроскопическом уровне траектории становятся размытыми и плохо определяемыми, поэтому поведение электронов приходится описывать в терминах волн вероятности, а не ньютоновских траекторий. Но как только мы это сделаем, анализ с триумфом возвращается. Он управляет эволюцией волн вероятности с помощью так называемого уравнения Шрёдингера.

Удивительно, но факт: даже на субатомном уровне, где ньютоновская физика уже не действует, созданный им анализ по-прежнему работает. И работает очень хорошо. Как мы увидим далее в книге, он объединил усилия с квантовой механикой и предсказал замечательные эффекты, лежащие в основе методов медицинской визуализации – от магнитно-резонансной (МРТ) и компьютерной (КТ) томографии до более экзотической позитронно-эмиссионной томографии (ПЭТ).

Пришло время ближе познакомиться с языком Вселенной. И начнем, разумеется, с бесконечности.

Глава 1. Бесконечность

Начало математике[27] положили обычные повседневные задачи. Пастухам нужно было следить за стадами. Фермерам – взвешивать собранное зерно. Сборщикам налогов – решать, сколько коров или кур крестьянин должен отдать правителю. Из таких практических требований и возникли числа. Сначала их определяли по пальцам рук и ног. Затем стали выцарапывать на костях животных. По мере того как представление чисел эволюционировало от черточек к символам, они облегчили все задачи – от налогообложения и торговли до бухгалтерского учета и переписи населения. Доказательства тому мы находим на глиняных табличках Месопотамии, созданных более пяти тысяч лет назад, – сделанная на них клиновидными значками запись называется клинописью.

Наряду с числами значение имели и формы. В Древнем Египте измерениям линий и углов придавали первостепенное значение. Каждый год землемерам приходилось заново проводить границы крестьянских хозяйств, поскольку разлив Нила стирал их. Эта деятельность позже дала название всей области математики, изучающей формы, – геометрия, от древнегреческого слова γεωμετρία, которое означало «землемерие»: γη – «земля» и μετρέω – «измеряю».



Поначалу геометрия работала с прямыми линиями и углами, что отражало ее утилитарное происхождение: треугольники были наклонными плоскостями, пирамиды – монументами и гробницами, а прямоугольники – столами, алтарями и земельными участками. Строители и плотники использовали прямые углы для построения вертикальных линий. Для моряков, архитекторов и священников знание геометрии прямых линий было необходимо для землемерных работ, навигации, ведения календаря, предсказания затмений и возведения храмов и святилищ.

Но всегда – даже когда геометрия была зациклена на прямых линиях – выделялась одна кривая, самая совершенная из всех: окружность. Мы видим ее в годичных кольцах деревьев, в волнах на пруду, в форме солнца и луны. В природе круги повсюду. Когда мы смотрим на них, они смотрят на нас – в буквальном смысле, ведь они в глазах наших близких, в зрачках и радужках. Круги и практичны, и эмоциональны, как колеса и обручальные кольца; в них есть нечто мистическое. Вечное возвращение предполагает цикл времен года, возрождения, вечной жизни и нескончаемой любви. Неудивительно, что круги привлекали внимание с тех пор, как люди стали изучать формы.

С математической точки зрения окружности воплощают изменения без изменений. Точка, двигающаяся по окружности, меняет направление движения, не меняя при этом своего расстояния от центра. Это минимальная форма изменений – самый простой способ двигаться по кривой. И, конечно же, окружность симметрична. Если вы повернете ее вокруг центра, она будет выглядеть точно так же. Такая поворотная симметрия может быть причиной распространенности этих фигур. Везде, где природу не беспокоит направление, обязательно появляются окружности. Посмотрите, что происходит, когда дождевая капля попадает в лужу: от точки удара расходятся мелкие волны. Они обязаны иметь круговую форму, потому что двигаются с одинаковой скоростью во всех направлениях и начинаются в одной точке. Этого требует симметрия.

25

Ball, A Century Ago Einstein Sparked, и Pais, Subtle Is the Lord. Оригинальная статья: Einstein, Zur Quantentheorie der Strahlung.

26

Усиление света посредством вынужденного излучения. Прим. пер.

27

Burton, History of Mathematics, и Katz, History of Mathematics, дают полномасштабное (хотя и без подробностей) введение в историю математики от античных времен до XX столетия. На более серьезном математическом уровне тема представлена в Stillwell, Mathematics and Its History. В качестве масштабного гуманистического подхода подойдет книга Kline, Mathematics in Western Culture.