Добавить в цитаты Настройки чтения

Страница 6 из 37

docker network create –driver overlay –subnet 192.168.10.0/24 demo-network

docker network ls

Simple clustering

In this article, we will not consider how to create a cluster manually, but will use two tools: Docker Swarm and Google Kubernetes – the most popular and most common solutions. Docker Swarm is simpler, it is part of Docker and therefore has the largest audience (subjectively), and Kubernetes provides much more capabilities, more tool integrations (for example, distributed storage for Volume), support in popular clouds, and more easily scalable for large projects (large abstraction, component approach).

Let's consider what a cluster is and what good it will bring us. A cluster is a distributed structure that abstracts independent servers into one logical entity and automates work on:

* In the event of a server crash, containers are dropped (new ones created) to other servers;

* even distribution of containers across servers for fault tolerance;

* creating a container on a server suitable for free resources;

* Expanding the container in case of failure;

* unified management interface from one point;

* performing operations taking into account the parameters of servers, for example, the size and type of disk and the characteristics of containers specified by the administrator, for example, associated containers with a single mount point are placed on this server;

* unification of different servers, for example, on different OS, cloud and non-cloud.

We will now move from looking at Docker Swarm to Kubernetes. Both of these systems are orchestration systems, both work with Docker containers (Kubernetes also supports RKT and Containerd), but the interactions between containers are fundamentally different due to the additional Kubernetes abstraction layer – POD. Both Docker Swarm and Kubernetes manage containers based on IP addresses and distribute them to nodes, inside which everything works through localhost, proxied by a bridge, but unlike Docker Swarm, which works for the user with physical containers, Kubernetes for the user works with logical – POD. A logical Kubernetes container consists of physical containers, the networking between which occurs through their ports, so they are not duplicated.

Both orchestration systems use an Overlay Network between host nodes to emulate the presence of managed units in a single local network space. This type of network is a logical type that uses ordinary TCP / IP networks for transport and is designed to emulate the presence of cluster nodes in a single network to manage the cluster and exchange information between its nodes, while at the TCP / IP level they ca





Both orchestration systems use the Ingress overlay network to provide access to themselves from the external network through the balancer, which matches the internal network with the external one based on the Linux kernel IP address mapping tables (iptalbes), separating them and allowing information to be exchanged even if there are identical IP addresses in internal and external network. And, here, to maintain the co

Kubernetes is the result of evolution through internal Google projects through Borg, then through Omega, based on the experience gained from experiments, a fairly scalable architecture has developed. Let's highlight the main types of components:

* POD – regular POD;

* ReplicaSet, Deployment – scalable PODs;

* DaemonSet – it is created in each cluster node;

* services (sorted in order of importance): ClusterIP (by default, basic for the rest), NodePort (redirects ports open in the cluster, for each POD, to ports from the range 30000-32767 for accessing specific PODs from the external), LoadBalancer ( NodePort with the ability to create a public IP address for Internet access in public clouds such as AWS and GCP), HostPort (opens ports on the host machine corresponding to the container, that is, if port 9200 is open in the container, it will also be open on the host machine for forward traffic) and HostNetwork (the containers in the POD will be in the host's network space).

The wizard contains at least: kube-APIserver, kube-sheduler and kube-controller-manager. Slave composition:

* kubelet – checking the health of a system component (nodes), creating and managing containers. It is located on each node, accesses the kube-APIserver and matches the node on which it is located.

* cAdviser – node monitoring.

Let's say we have hosting and we have created three AVS servers. Now you need to install Docker and Docker-machine on each server, how to do this was described above. Docker-machine itself is a virtual machine for Docker containers, we will only build an internal driver for it – VirtualBox – so as not to install additional packages. Now, from the operations that must be performed on each server, it remains to create Docker machines, the rest of the operations for setting up and creating containers on them can be performed from the master node, and they will be automatically launched on free nodes and redistributed when their number changes. So, let's start the Docker-machine on the first node:

docker-machine create –driver virtualbox –virtualbox-cpu-count "2" –virtualbox-memory "2048" –virtualbox-disk-size "20000" swarm-node-1

docker-machine env swarm-node-1 // tcp: //192.168.99.100: 2376

eval $ (docker-machine env swarm-node-1)

We launch the second node:

docker-machine create –driver virtualbox –virtualbox-cpu-count "2" –virtualbox-memory "2048" –virtualbox-disk-size "20000" swarm-node-2