Добавить в цитаты Настройки чтения

Страница 15 из 19

Первому делению мейоза предшествует очень длительная профаза: если в мужском гаметогенезе она продолжается 30 дней, то в женском организме длится десятки лет. В это время гомологичные хромосомы сближаются друг с другом и в таком состоянии пребывают почти все время, то есть в профазе первого деления мейоза хромосомы удваиваются. При этом резко активируются ферменты, разрезающие и сшивающие нити ДНК.

В яйцеклетке второе мейотическое деление (на стадии ооцита II – развития женской половой клетки) не может происходить самостоятельно без помощи сперматозоида, так как клетка потеряла свои центриоли, специальные тельца, участвующие в делении. Поэтому требуется обязательное оплодотворение, чтобы сперматозоид привнес свои центриоли. В результате этого происходит второе деление мейоза и образуется зигота.

В мейозе гомологичные хромосомы конъюгируют друг с другом и вступают в кроссинговер. Такая необходимость увеличивает генетическую вариабельность вида. Действительно, «папины» и «мамины» наследственные признаки, до сих пор распределенные в каждой паре гомологичных хромосом, после кроссинговера оказываются перемешанными. Этот процесс напоминает репарацию генов, при которой, вырезая поврежденные участки, нужно разрывать и сшивать нити ДНК. То есть одновременно с кроссинговером, вероятно, осуществляется и суперрепарация генома. Если же что-то не получилось, как должно, то в клетке срабатывают датчики контроля состояния собственной ДНК и начинается процесс самоубийства, или, другими словами, апоптоза.

Первое деление заканчивается расхождением гомологичных хромосом по двум дочерним клеткам. Второе проходит быстро, без удвоения ДНК, и приводит к расхождению хроматид каждой хромосомы по двум дочерним клеткам, в результате чего последние оказываются гаплоидными, то есть содержащими одинарный набор хромосом.

В процессе мейоза получается четыре итоговые клетки: одна гаплоидная и три редукционных тельца. Значение этого процесса в том, что у организмов, размножающихся половым путем, автоматически предотвращается удвоение числа хромосом при произведении потомства. Мейоз создает возможность для возникновения новых генетических комбинаций и ограничивает размножение путем внутривидового скрещивания.

Процессы, которые восстанавливают состояние генома, конъюгация гомологичных хромосом, кроссинговер или что-то другое и пока неизвестное, могут быть полезны для запуска механизмов «долгой жизни», и именно здесь нужны модельные опыты на животных.

Самый известный в мире российский биогеронтолог А. М. Оловников ответил на мой вопрос к нему, стареет ли половая клетка, так: «Да, стареет. Вот что известно из разных работ, например по теломерам. Твердо установлено, что теломеры в сперматозоидах пожилого мужчины длиннее, чем у молодого[52]. Это вызвано «дисбалансом» белков (теломеразы и ряда других факторов), следящих за длиной теломер. Вероятная причина скрывается не внутри половой клетки (так как сопутствующих этому мутаций не было обнаружено), а заключена в среде стареющего носителя этих половых клеток. Поэтому есть основания заключить, что старение пожилого организма ведет к этому дисбалансу эпигенетически, то есть через различные модификации (ацетилирование гистонов, метилирование ДНК и тому подобное). Детали еще предстоит уточнять, но принципиальный факт изменений в сперматозоидах с возрастом (даже структурных изменениях, поскольку теломеры – это структуры) установлен».

Таким образом, на вопрос, стареют ли половые клетки, стоит ответить четко: «Да». И это означает, что нестареющих клеток в организме просто нет. Выяснение механизмов суперрепарации ДНК, которая происходит во время мейоза, возможно, решит часть проблем старения человека.

Интересная связь может быть между ростом продолжительности жизни человека как вида и более поздним зачатием. Давайте поразмышляем: сегодня среди мужчин зрелого возраста (50–55 лет) заметна тенденция рожать детей во втором или третьем браке. И женщины сейчас чаще производят ребенка на свет в более взрослом состоянии, чем еще полвека назад. Сегодня, когда давление среды в виде голода и особо опасных инфекций фактически равно нулю, это дает возможность самым здоровым из людей в возрасте, а таких очень много, завести здоровое потомство. При этом длина теломер сперматозоидов у мужчин в возрасте, как мы знаем, больше, чем у более молодых. Если это свойство более длинных защитных колпачков (а это структурное образование с временными задачами) передастся их потомству, то мы должны увидеть много людей, которые живут дольше.

Почему загадочная история Бенджамина Баттона невозможна?

Для понимания механизмов старения очень важно уметь не только слушать, но и слышать природу человека. Именно оно даст ключ к активному и здоровому долголетию.

Если, как считают сегодня геронтологи, в организме стареют все клетки, включая половые, то как тогда всегда рождается организм с нулевым возрастом и почему история, когда человек появляется на свет старым, просто невозможна. Возьмем как пример фильм 2008 года «Загадочная история Бенджамина Баттона»: главный герой родился стариком и проживает жизнь в обратном порядке. Удивительная история. Чистый Голливуд.





Так почему мы не рождаемся хоть на каплю старыми даже в том случае, если наш отец уже пожилой? И почему, когда у человека стареют все клетки, даже от самых старых родителей рождается младенец без малейших признаков возрастных изменений? И, таким образом, несмотря на возможные генетические болезни, которые могут возникнуть при рождении от «старых» родителей, он всегда рождается только с предсказуемо обнуленным возрастом.

Выдающийся геронтолог, один из основателей секции геронтологии МОИП при МГУ им. М. В. Ломоносова, Жорес Медведев опубликовал в 1981 году работу On the immortality of the germ line: genetic and biochemical mechanisms. A review (О бессмертии зародышевой линии: генетические и биохимические механизмы. Обзор)[53]. В этой статье рассматриваются механизмы «бессмертия» половых клеток, которые сводятся в основном к существованию целого ряда препятствий, фактически большого барьерного рифа, не позволяющего потомству появиться из «старых» половых клеток. Поэтому дети всегда и рождаются только с нулевым возрастом, то есть с запущенным с нуля механизмом старения.

Давайте разберемся. Для передачи генетической информации от поколения к поколению существуют специальные эмбриональные клетки. Они отделяются от прочих на достаточно ранних стадиях развития плода до формирования половых желез, куда затем и мигрируют. Из них и образуются гаметы, больше известные нам как сперматозоиды и яйцеклетки.

Но эти клетки должны сначала созреть. Это называют гаметогенезом, термином, обозначающим сумму процессов, которые приводят к созреванию половых клеток. И если яйцеклетки образуются уже в эмбриогенезе и затем находятся только в профазе I мейоза, то процесс сперматогенеза не останавливается в течение всей жизни мужчины.

У видов, для которых характерен жизненный цикл с гаметической редукцией, мейоз тесно связан с гаметогенезом, однако нельзя говорить о полной идентичности этих процессов. Так, зрелый сперматозоид, готовый к оплодотворению, формируется лишь по завершении мейоза, а ооцит созревает до его окончания. Более того, слияние гамет происходит до завершения мейоза в ооците.

Основой для успешного гаметогенеза служит мейоз, или редукционное деление клетки с уменьшением числа хромосом вдвое. Это основное условие для полового размножения и одновременно сохранения числа хромосом. В результате получаются гаплоидные гаметы, и только слияние ооцита и сперматозоида восстанавливает число хромосом до диплоидного в зиготе. Последующее деление клеток происходит только митотическим путем, что позволяет поддерживать обязательную диплоидность.

52

Обратите внимание, именно так, это не ошибка. – Примеч. авт.

53

Medvedev, Z. On the immortality of the germ line: genetic and biochemical mechanism // Mech Ageing Dev. 1981, Dec. 17 (4): 331–59.