Добавить в цитаты Настройки чтения

Страница 2 из 7

Экологические факторы действуют на организмы по разному. Лишь в простейших случаях имеет место прямое влияние. Однако очень часто экологические факторы влияют косвенно: сочетание высокой температуры с низкой влажностью и отсутствие дождей приводит к выгоранию растительности, миграции или вымиранию травоядных животных и т.д.

Сила экологических факторов постоянно меняется, мы живем в мире с переменными условиями, и практически нет мест на планете, где значения экологических факторов более или менее постоянны (пожалуй, только на дне океана или в глубине пещер).

При оптимальных значениях экологического фактора организмы активно растут, питаются, размножаются.

В основном возможность существования видов определяется экстремальными условиями. В природе даже при благоприятных условиях существования всегда оказывается в минимуме или максимуме какой-либо важный фактор.

Такие отклонения бывают эпизодическими, но влекут за собой самые пагубные последствия (многоснежные суровые зимы, наличие опасных паразитов, наводнения).

С законами оптимума и лимитирующих факторов сталкивается сельское хозяйство.

Закон взаимодействия экологических факторов гласит: оптимальная зона и пределы выносливости организмов по отношению к какому-либо экологическому фактору окружающей среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы.

Один и тот же фактор в сочетании с другими оказывает разное экологическое воздействие. Например, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду.

Следовательно, одно и то же экологическое воздействие может быть получено разными способами. Увядание растений можно приостановить за счет увеличения количества влаги в почве, а также в результате снижения температуры воздуха, уменьшающего испарение. Таким образом, создается эффект частичного взаимозамещения экологических факторов.

Однако, взаимная компенсация действия экологических факторов окружающей среды имеет определенные пределы, и полностью заменить один из них другим нельзя. Например, отсутствие воды при наличии всех остальных благоприятных факторов приводит к гибели растений, подобная закономерность наблюдается при отсутствии хотя бы одного из основных элементов минерального питания. Крайний дефицит тепла в полярных пустынях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью.

В окружающей среде всегда какой-либо фактор оказывается в минимуме или максимуме, он характеризуется как лимитирующий фактор, который ограничивает размножение. В городе же организмы обычно чувствуют недостаток многих полезных веществ и переизбыток токсикантов, поступающих из-за выбросов автотранспорта, промышленных производств и т.д. Таким образом, в мегаполисах наблюдается комплексное воздействие неблагоприятных экологических факторов, например тяжелых металлов, засоления и т.д.

Закон взаимодействия экологических факторов для антропогенных факторов можно сформулировать следующим образом: при взаимодействии антропогенных химических факторов наблюдается либо усиление токсического действия в результате простого суммирования или улучшения поглощения токсикантов, либо ослабление за счет подавления поглощения одного или ряда вредных веществ другим, или перевода токсиканта в физиологически инертные формы. При очень высоких концентрациях вредных веществ, при комплексном взаимодействии часто происходит усиление токсичного воздействия на растения. К большому сожалению, понятие предельно допустимая концентрация (ПДК) часто не учитывает комплексное воздействие неблагоприятных факторов, поэтому необходимо разработать экологические нормативы, например для почвенных условий, различных групп организмов которые учитывали комплексное воздействие хотя бы нескольких факторов. В идеале, например, для почв, необходимо провести анализ токсикантов, содержащихся в почвах определенного города, поселка и, с учетом наличия основных токсикантов, ввести понятие ориентировочно допустимая концентрация (ОДК) комплексного воздействия, отдельно для каждых групп живых организмов (травянистых цветковых растений, хвойных и др). ОДК комплексного воздействия в почвенных условиях в случае ослаблении токсического действия должна соответствовать ОДК или ПДК наиболее токсического вещества, в случае усиления токсического действия ОДК комплексного воздействия – это максимальная концентрация загрязняющих химических веществ в окружающей среде, которая при повседневном влиянии в течение длительного времени не вызывает негативных последствий для живых организмов и их потомков.





Результаты опытов для ряда травянистых растений показали усиление токсического действия кадмия при добавлении свинца и ослабление при добавлении цинка, усиление действия меди при добавлении цинка.

1.4. Абиотические факторы

К абиотическим факторам относят: свет, температуру, соленость воды, влажность, ветер, воздух, давление, скорость течения, долготу дня, состав почвы, газовый состав воздуха и др.

Абиотические факторы делят на климатические, эдафические и топографические (условия рельефа). Климатические и эдафические факторы зависят от географического положения биотопа.

1.4.1. Свет

Свет экологический фактор, необходимый для жизни, источник энергии для фотосинтеза. Интенсивность света, длина волны, продолжительность освещения, а также угол падения солнечных лучей на земную поверхность (зависит от широты, сезона, времени дня и экспозиции склона) оказывают различное влияние на разные организмы. По отношению к свету выделяют три группы растений: светолюбивые (гелиофиты), тенелюбивые (сциофиты), теневыносливые (факультативные гелиофиты).

Гелиофиты – виды открытых мест в условиях полного солнечного освещения (сосна, газонные травы, клевер ползучий, подсолнечник и др.), в сухих местах обычно образуют разреженный и невысокий покров. Типичные светолюбивые растения – луговые, степные травы, многие культурные растения. При интенсивности до 13,5%, свет оказывает стимулирующее действие на рост растений, при большей – действует угнетающе. У гелиофитов достаточно высокие затраты на дыхание. Для них характерны плотные, кожистые листья, на листьях и побегах сизый восковой налет, который защищает лист от перегрева и препятствует интенсивному испарению. Фотосинтез у светолюбивых растений подавляется при резком увеличении освещенности. Особая группа гелиофитов – С-4-растения. Такое название эти гелиофиты, получили потому, что фиксация СО2 идет путем С4-дикарбоновых кислот, световое насыщение фотосинтеза не достигается даже при самой сильной освещенности. Это растения засушливых экосистем, культурные растения ( сахарный тростник, кукуруза и др.). Особенно много С4-растений среди семейств мятликовых, осоковых, молочайных маревых, гвоздичных и др. С4-растения отличаются высокой продуктивностью.

Сциофиты (теневыносливые) – не выносят сильного освещения, растут под пологом леса при сильном затенении (виды, обитающие в нижних, сильно затененных ярусах ельников, дубрав и т.п.). Для них характерны – нежные тонкие листья с тонкой кутикулой, обычно матовые, неопушенные, более светлого цвета, чем у растений открытых мест, побеги вытянутые.

Плауны довольствуются 0,25 – 0,5 % полного дневного света, а цветковые растения встречаются обычно там, где освещенность в пасмурные дни достигает не менее 0,5–1% (бегонии, недотрога, травы из семейств: имбирные, мареновые, коммелиновые).

В северных широколиственных и темнохвойных лесах полог сомкнутого древостоя может пропускать всего 1–2% физиологически активной радиации (ФАР), слабая освещенность сочетается с повышенной влажностью воздуха и повышенным содержанием в нем СО2, особенно у поверхности почвы. Сциофиты этих лесов – зеленые мхи, кислица обыкновенная, грушанки, майник двулистный и др. Для тенелюбивых растений экологическим оптимумом является слабая освещенность.