Добавить в цитаты Настройки чтения

Страница 4 из 9

В ФЭП первого поколения используются следующие материалы:

–монокристаллический кремний (mc-Si),

–поликристаллический кремний (m-Si),

–на основе GaAs, арсени́д га́ллия – химическое соединение галлия и мышьяка,

–ribbon-технологии (EFG, S-web),

–тонкослойный поликремний (Apex).

Если основной элемент монокристаллической батареи – это искусственно выращенный монокристалл больших размеров, то другой вид светоприемников имеет полупроводниковый элемент поликристаллической структуры. Считается, что для потребления энергии Солнца оптимальным вариантом являются поликристаллические солнечные батареи. Они дешевле своего монокристаллического аналога, так как для производства используют обрезки, оставшиеся после монокристаллических элементов. Кремний при изготовлении рабочего элемента поликристаллической панели просто охлаждается из горячего расплава, что не требует высоких затрат и сложных технологий. По внешнему виду поликристалл кремния отличается от монокристалла неоднородностью цветовой гаммы, отливающей голубым и светло-синим цветом.

В настоящее время основным материалом для производства солнечных элементов является достаточно распространенный химический элемент – кремний (Si), составляющий почти четвертую часть массы земной коры. Однако встречается он в природе в связанном виде (SiO2).

ФЭП на основе монокристаллической пластины из кремния представлена на рис.2.2. Отличие этих преобразователей в том, что светочувствительные ячейки направлены только в одну сторону. Это дает возможность получать самый высокий КПД – до 25%. Но при этом панель должна все время быть направлена на источник света (Солнце), иначе мощность отдачи существенно снижается. Такая панель хороша только в солнечную погоду и станет оптимальной для южных районов нашей страны.

Рис.2.2. ФЭП на основе монокристаллического кремния

Кремниевые монокристаллические панели легко узнать при визуальном осмотре. В углах элементов хорошо различимы квадратики белого цвета. Для самих же пластин характерна поверхность однородного синего цвета. Солнечным панелям монокристаллическим большой площади необходимы поворотные устройства, которые бы поворачивали конструкцию вслед за движущимся солнцем, стараясь, чтобы на лучи падали на пластину максимально близко к прямому углу. Период их эксплуатации достигает 25 и более лет.

ФЭП на основе поликристаллической пластины из кремния представлена на рис 2.3.

Рис.2.3. ФЭП на основе поликристаллического кремния

Наибольшее распространение на сегодняшний день получили модули, изготовленные на основе фотоэлектрических поликристаллических элементов. Востребованность данного типа альтернативных энергоресурсов объясняется наиболее оптимальным соотношением стоимости изделия и количества получаемой с его помощью энергии. Данную разновидность можно определить по синему цвету и кристаллической структуре образующих деталей, а установка модулей не составит особого труда. Поликристаллические элементы имеют строго квадратную форму. Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого

ФЭП на основе поликристаллической пластины содержат кристаллы кремния, которые направлены в разные стороны, что дает более низкий КПД, до 20%. Однако главным преимуществом этого вида солнечных панелей является наличие отличной эффективности при плохом и рассеянном свете. Такая батарея все равно будет питать аккумуляторы в пасмурную погоду.





2.2.2. Второе поколение фотоэлементов

Второе поколение фотоэлементов так же основывается на использовании p-n перехода, однако не используют кристаллический кремний как основной материал. Обычно используются следующие материалы:

–аморфный кремний (a-Si),

–микро- и нанокремний (pc-Si/nc-Si),

–кремний на стекле (CSG),

–теллурид кадмия (CdTe),

–селенид меди -индия-галлия (CIGS).

Фотоэлементы второго поколения являются тонкопленочными, и они производятся вакуумным методом. Вакуумная технология по сравнению с технологией производства кристаллических ФЭП является менее энергозатратной, а также характеризуется меньшим объемом капитальных вложений. Она позволяет выпускать гибкие дешевые ФЭП большой площади, однако коэффициент преобразования таких элементов ниже по сравнению с ФЭП первого поколения.

Как правило, толщина поглощающего свет слоя полупроводника составляет всего от 1 до 3 мкм. Тонкопленочные фотоэлементы, представляющие собой тонкую пластину из стекла с нанесенными слоями полупроводников либо фольгу, можно размещать на поверхности любой конфигурации, а также наносить на ткани, и даже использовать вместо жалюзи.

Наиболее распространены аморфный кремний, теллурид кадмия (CdTe) и. селенид индия/галлия/меди (CIGS).

Аморфные кремниевые тонкопленочные солнечные элементы присутствуют на рынке уже более 20 лет, и a-Si, вероятно, является наиболее хорошо развитой технологией тонкопленочных солнечных элементов. Аморфный кремний выступил в качестве более дешевой альтернативы монокристаллическому. Первые СЭ на его основе были созданы в 1975 году. Оптическое поглощение аморфного кремния в 20 раз выше, чем кристаллического. Поэтому для существенного поглощения видимого света достаточно пленки а-Si:Н толщиной 0,5–1,0 мкм вместо дорогостоящих кремниевых 300-мкм подложек. Кроме того, благодаря существующим технологиям получения тонких пленок аморфного кремния большой площади, не требуется операции резки, шлифовки и полировки, необходимых для СЭ на основе монокристаллического кремния. По сравнению с поликристаллическими кремниевыми элементами изделия на основе a-Si:Н производят при более низких температурах (300°С) и при этом можно использовать дешевые стеклянные подложки, что сократит расход кремния в 20 раз.

Процесс производства таких фотоэлементов более автоматизирован и имеет значительно меньшую себестоимость. Основным недостатком фотоэлементов второго поколения является меньшая эффективность, по сравнению с фотоэлементами первого поколения, которая колеблется в зависимости от технологии от 7-15%. В настоящее время их доля рынка составляет около 18%.

Аморфные пластины получают путем напыления кремния и примесей в вакууме. Слой кремния наносится на прочный слой специальной фольги. Механизм их изготовления совершенно иной, чем у кристаллических фотоэлементов. Для них используется гидрид вместо чистого кремния. Его нагревают до парообразного состояния. Когда пары достигают подложки, они осаждаются на ней. Затраты на изготовления снижаются, а кристаллы не образуются (в классическом понимании). Полученные фотоэлементы в основе имеют полимерную подложку гибкую либо жесткий стеклянный лист. Современные модели комбинируют из нескольких слоев, обогащенных германием и углеродом. Это позволяет устранить главный недостаток панелей a-Si – быструю деградацию ячеек.

За последнее время коренным образом изменилась и технология нанесения слоев полупроводника. Ранее нанесение осуществлялось путем вакуумного напыления, в настоящее же время разработана инновационная технология – печатание специальными чернилами, содержащими смесь полупроводниковых наночастиц. Применение новой технологии и увеличение объемов производства привели к значительному удешевлению солнечной электроэнергии.