Добавить в цитаты Настройки чтения

Страница 14 из 15



Уиллер решил, что если один из продуктов этих реакций имеет высокое сродство к нейтронам, то он будет ингибировать (тормозить, подавлять) ядерную реакцию, поглощая свободные нейтроны до тех пор, пока их не станет слишком мало и реакция остановится. Чем больше синтезируется «яда», тем сложнее поддерживать производительность реактора. В конечном счете «яд» подавит реакцию и реактор остановится. В апреле 1942 года Уиллер сделал еще некоторые расчеты и пришел к выводу, что самоотравление может стать серьезной проблемой лишь в том случае, если один из промежуточных продуктов реактора имеет сильный «аппетит» на медленные, «термические» нейтроны. Причем интенсивность захвата нейтронов у такого продукта должна быть примерно в 150 раз выше, чем у самого урана-235.

После проверки реактора «В» оказалось, что воды в нем нет. Теперь наиболее очевидной причиной его остановки представлялось самоотравление. Вскоре после полуночи с 27 на 28 сентября работа реактора возобновилась – около полудня он вновь выдавал девять миллионов ватт, а потом реакция снова стала затухать. Это явление, в свою очередь, свидетельствовало, что «яд» также радиоактивен и имеет период полураспада около 11 часов – примерно столько времени понадобилось, чтобы восстановить работу реактора. Уиллер проверил таблицу измеренных значений полураспада и обнаружил ядерного паразита. Это был изотоп ксенона Хе-135 (с периодом полураспада 9,1 часа по современным данным). Позже выяснилось, что он захватывал нейтроны примерно в 4000 раз активнее, чем уран-235! Продукты распада оставались в структуре металла (урана) и не улетучивались (даже если это был газ) – удалить их можно было только при переработке материалов тепловыделяющих сборок. Продукты распада вызывали разбухание топливных сборок и деформации их оболочек.

После того как проблему обнаружили, устранить ее оказалось относительно просто. Разумеется, физику ядерных реакций изменить было невозможно. Реактор в любом случае синтезировал бы ксенон-135 и сам себя отравлял. Решение было в следующем: в реактор понемногу добавляется урановое топливо – в результате при реакции будет гарантированно генерироваться больше нейтронов, чем сможет поглотить ксенон при равновесной концентрации. К счастью, конструкция реактора допускала такие незапланированные доработки. Для просверливания дополнительных трубок требовались бы значительные затраты и остановка реактора. Предусмотрительность Уиллера себя оправдала. Необходимое урановое топливо можно было добавлять в реактор без кардинальных конструкторских изменений. (см. [25] с. 170).

А проблемы с ксеноном-135 и с разбуханием топливных сборок ТВЭЛов остались в качестве «головной боли» при управлении и более совершенными реакторными установками.

В 1949 году в США уже запустили 4 промышленных реактора по наработке оружейного плутония с мощностью 250 МВт, причём два из них были пущены в сентябре и ноябре 1944 года, а один – в начале 1945 года. К концу 1949 года на этих реакторах было наработано около 700 кг оружейного плутония, в том числе к концу 1945 года – около 120 кг. Такие «темпы» введения реакторов говорили о том, что США намеревались производить атомные бомбы никак не в единичных экземплярах, а массово. Отметим, что СССР к концу 1949 году вряд ли располагал количеством плутония, заметно превышающим 10 кг (Андрюшин, см. [25], с. 38.), в частности, и потому, что к этому сроку в СССР было изготовлено только две атомные бомбы (одну взорвали 29 августа).

Конструкции первых американских атомных бомб

Первые американские бомбы были сделаны по двум разным технологиям, которые американцы развивали параллельно и «конкурентно», – два направления привели к неравнозначным успехам, а остальные направления «провалились» из-за слишком высоких затрат или нерешённых технических проблем. Одно направление – это обогащение урана до оружейного уровня не менее 90 %. Второе – это получение изотопа плутония-239 в ядерных реакторах.

В самом первом бомбе-устройстве «Штучка», взорванном на испытании «Тринити» – «Троица» в Аламогордо 16 июля, и в такой же бомбе, но с оболочкой и собственной автономной электросистемой «Толстяк» (взорванной над Нагасаки) применяли заряд из плутония-239. Заряд шаровой формы имел массу 6,4 кг. Этот плутоний получали в ядерных ректорах вначале с природным, а затем с низко-обогащённым ураном и с замедлителями нейтронов на графите (а после и на тяжёлой воде D2О). При поглощении нейтрона ядро изотопа природного урана-239 становилось ядром плутония-239, который и выделяли из продуктов деления реактора. Циклы превращений урана-238 в плутоний-239 и цикл превращения тория-232 в ядерное горючее Уран-233 включают захват ядром атома нейтрона (n,σ) с последующим бета-распадом β, – циклы следующие (n – нейтрон, σ – поглощение, β – распад с излучением электрона):

92U238(n,σ)→ 92U239 →β93Np239→β94Pu239 – цикл Плутония-239



90Th232(n,σ)→ 90Th233→β91Pa233→β92U233 – цикл Урана-233

В США плутоний-239 производился в Хэнфорде, штат Вашингтон и Саванне, штат Джорджия.

Оружейный уран в США производили на заводе К-25 с дополнительным обогащением на каллютроне Лоуренса, пока завод К-25 не достиг выхода изотопа с требуемой концентрацией.

Мы видим, – в качестве «ядерного горючего» для реакторов и зарядов для атомных бомб необходимо получить определённые изотопы урана и плутония. Однако при определённых условиях оказалось возможным получить цепную реакцию и в природном уране, если удавалось замедлить нейтроны, увеличить их захват атомами урана-235 и произвести в реакторах плутоний для бомб.

Принципиальное доказательство возможности создания атомной бомбы было не только теоретически, но и практически получено после осуществления цепной ядерной реакции (ЦЯР) в ядерном реакторе. В США первую цепную ядерную реакцию в реакторе американские физики во главе с Энрико Ферми получили 2 декабря 1942 г. в Чикаго (установка располагалась на территории студенческого стадиона). Коллектив И. В. Курчатова добился в СССР того же результата 25 декабря 1946 года. Вы видите, – между ЦЯР и первыми испытаниями бомб 16 июля 1945 и 29 августа 1949 и у США и у СССР прошло 2 года и 7 месяцев в обоих случаях плюс 17 дней у США и плюс 27 дней у СССР. Это реальный объективный срок развития данной научной разработки, который тогда заметно уменьшить было нельзя по объективным причинам. Причём обе эти разработки велись фактически в условиях и по логике «аврала» военного времени, – с полной отдачей сил и не жалея средств.

Урановая бомба «Малыш» – «пушечная» конструктивная схема (см. [5], c. 49)

Бомбы имели разную конструкцию. В «Малыше» сжатие заряда ядерной взрывчатки из урана-235 достигалось «пушечной» схемой, – выстрелом части заряда из пушки во вторую часть, являвшуюся мишенью, которая была заключена в толстую наружную оболочку – тампер из карбида бора (отражатель нейтронов и удерживающую заряд в начальное мгновение взрыва). В «Толстяке» заряд сжимался более сильно в результате направленного взрыва внешней взрывчатки, – заряд «имплозивного» типа из «линз» взрывчатки. Без сильного сжатия заряда простым соединением частей заряда в «критическую массу» ядерного горючего взрыв не мог получиться мощным ввиду быстрого распыления ядерного заряда в начальный момент взрыва. И даже при достигнутых американцами сжатиях заряда, он делился только частично, и КПД первых ядерных бомб был на уровне КПД «паровоза» или «автомобиля – порядка 1 % в «Малыше» и до 15 % в «Толстяке», а в более совершенных конструкциях бомб его удалось повысить. Примерно таким же невысоким был и КПД первых крупных баллистических ракет!