Страница 7 из 8
Для того чтобы стать организацией, ориентированной на данные и ИИ, необязательно быть технологической компанией из Кремниевой долины. Еще до появления Covid-19 мы видели примеры компаний, от Comcast до Fidelity Investments, которые трансформировались для оцифровки своих операционных моделей и мер реагирования на угрозы со стороны конкурентов. Септики все еще сомневались в необходимости и жизнеспособности преобразований для старых компаний. Covid-19 положил конец всем этим спорам.
Мы также узнали, насколько планирование и подготовка улучшают качество и эффективность действий по внедрению полноценных преобразований. То, что удалось сделать в период кризиса таким организациям, как MGH, Novartis и Moderna, стало возможным, потому что они предварительно начали применять новый подход в качестве эксперимента и выстраивать его основу. Даже в Гарвардской школе бизнеса предшествующий опыт онлайн-обучения оказался очень ценным для трансформации работы всего учебного заведения. Теперь задача состоит в том, чтобы поддерживать преобразования и формировать их на основе продуманного и взвешенного подхода.
Эти новые наблюдения подтверждают многие из центральных идей данной книги, главная из которых – операционная структура действительно имеет большое значение. Ориентированная на работу с ИИ компания определяется не сложностью отдельных разрабатываемых ею алгоритмов, а структурой и рабочими процессами, позволяющими оперативно внедрять множество ИИ-решений, каждое из которых направлено на реальную бизнес-проблему. Безусловно, в компании Moderna было предпринято все, чтобы данные, аналитика и ИИ блестяще функционировали. Однако даже на примере MGH, IKEA и Novartis мы видим, что кризис стимулирует компании опираться на те же самые комплексные данные и организационную структуру, чтобы оперативно разрабатывать и внедрять инновационную и точную аналитику. В конечном итоге структура – это то, что обеспечивает оперативные, гибкие, масштабируемые и адаптируемые меры реагирования, которые способны поспеть за экспоненциально растущей угрозой вроде Covid-19, и позволяют осуществлять оперативную ответную реакцию как на вызовы, так и при появлении новых возможностей.
Примеры этих компаний подтверждают также, что при масштабном развертывании простой ИИ (или так называемый «слабый ИИ») может возыметь огромное влияние. Для того чтобы изменить ситуацию к лучшему, ИИ не нужно считать научно-фантастической сказкой. Ведь даже простые алгоритмы, основанные на достоверных данных, могут дать чрезвычайно важные результаты. Так, обыкновенные чат-боты и базовое машинное обучение имеют очень большое значение в том случае, если они устраняют серьезные проблемы в операционной работе или позволяют делать важные прогнозы. Это еще одна ключевая тема данной книги, поскольку она подчеркивает важность слабого ИИ для трансформации экономики и изменения методов работы компаний. Например, большая часть ИИ-технологий, которые внедрялись в больницах для борьбы с Covid-19, включали в себя простые алгоритмы машинного обучения, основанные на достоверных данных. Они помогали с критически важными прогнозами, например относительно поставок респираторов в MGH. Опять же, речь идет о внедрении простой инфраструктуры на основе ИИ в максимально возможном количестве бизнес-процессов.
Необходимо отметить, что подобная трансформация имеет свою цену. Covid-19 резко усилил и расширил влияние цифрового охвата, области применения и обучения в отношении мировой экономики и общества. Пожалуй, наибольшую озабоченность вызывает влияние Covid-19 на цифровой разрыв между богатыми и бедными компаниями и отдельными людьми. Кроме влияния на конкурентоспособность, производительность и доход, цифровой разрыв теперь определяет разницу между теми, кто может работать, и теми, кто нет; между теми, кто может находиться в безопасности у себя дома, и теми, у кого нет такой возможности; между компаниями, которые по-прежнему работают, и теми, кто остановил свою деятельность. Трагизм ситуации также усугубляет и то, что такой раскол усиливает давнее экономическое и расовое неравенство.
Эта пандемия трансформирует каждого из нас и обострит все этические проблемы, связанные с цифровыми организациями и операционными процессами, – от фейковых новостей до предвзятости, от безопасности до конфиденциальности. Таким образом, она ускоряет развал многих государственных и общественных институтов, а также усиливает угрозу гражданским свободам. Пока еще все не закончилось, и каждому из нас важно внимательно следить за обсуждениями и участвовать в них, чтобы помогать информировать и защищать демократические процедуры как на локальном, так и на глобальном уровнях.
От данных к мудрости
Вирус возвращается. Сегодня сидя здесь и печатая заключительные слова для предисловия, мы сталкиваемся с фактически беспрецедентной неопределенностью в том, что касается мирового здравоохранения, экономики и политики. Некоторые из нас наблюдают затишье в распространении Covid-19, и во многих странах экономика начинает восстанавливаться. Несмотря на это данный кризис еще далек от завершения. Когда города в США и других странах открываются вновь, вирус возвращается с новой экспоненциально возрастающей свирепостью. Буквально вчера мы видели новый рекордный максимум зарегистрированных за день случаев заболевания Covid-19 как в США, так и во всем мире. Как только случаи госпитализации добрались до Бостона, MGH стала готовиться к повторному столкновению с вирусом. На всякий случай.
К сожалению, по мере того как пандемия продолжает распространяться, она преподносит нам еще один важный урок: без умелого руководства даже лучшая обработка данных и аналитика не приведут к мудрости. Прискорбно, что лишь малая часть общества усваивает некоторые из тех важных выводов, полученных в период первой волны пандемии. Например, теперь мы знаем со статистической точностью, что маски помогают избежать заражения инфекцией и сверхбыстрого распространения вируса. Тем не менее многие наши руководители не признают, не уважают и не используют в своей работе даже такую простую аналитическую информацию, что фактически приводит к человеческим жертвам, которых можно было бы избежать. И вот мы сидим и с ужасом наблюдаем за тем, как груда наших данных, аналитика и искусственный интеллект не способны внести свой вклад в коллективный разум, а это действительно могло бы положить конец пандемии.
Однако независимо от того, что ожидает нас в будущем, движение на пути к цифровой трансформации экономики уже не остановить. Влияние цифровых технологий повсеместно, и этому можно найти множество доказательств, а набранные темпы развития достигли такого уровня, что данный процесс теперь невозможно повернуть вспять. Что бы ни происходило, мы точно знаем: скорость цифровой трансформации резко возросла, и это формирует безотлагательную потребность в таком подходе к руководству в сфере бизнеса и технологий, который поможет стимулировать работу новой эпохи экономического развития.
Для того чтобы оставаться эффективными, наши руководители должны осознавать значение точности и аналитики, иметь базовое понимание технологии и экономической составляющей информационных платформ, цифровых сетей и искусственного интеллекта, обладать страстным желанием перемен и преобразований. Однако более всего им необходимо отличное знание этических норм относительно цифрового масштабирования, области применения и обучения, а также глубокое понимание негативных экономических и социальных последствий в случае неправильной трансформации. Мы искренне надеемся, что эта книга послужит для них стратегическим ресурсом.
Глава 1
Эпоха ИИ
«Это Рембрандт!» – воскликнул, воздев руки, аккуратно одетый седовласый джентльмен. Другие посетители не могли не согласиться с авторитетным мнением руководителя австралийского художественного музея. Убеленный сединами господин заявил, что без труда узнал руку голландского живописца XVII века. Однако спустя мгновение джентльмен растерялся: удивительно, но он никак не мог вспомнить названия картины, представленной на рисунке 1.1.