Добавить в цитаты Настройки чтения

Страница 34 из 47

В науке XIX - XX вв. наиболее значимые теоретические открытия оказались связаны с разработкой принципов и методов эволюционного исследования. Выявление факторов, условий, механизмов эволюционного процесса дало возможность ввести новые плодотворные понятия и продвинуть теоретическую мысль в тех областях науки, которые испытывали трудности в разработке обобщающих концепций. Подобное продвижение состоялось в современной биологии (синтетическая теория эволюции), в современной геологии (теория динамики платформ, теория геосинклинальных поясов), в современной космологии (теория Большого взрыва).

Примечательно, что эволюционные идеи вошли в современную математику. Известно, что до начала XVII в. математика была преимущественно наукой о числах, скалярных величинах и сравнительно простых геометрических фигурах. Эти объекты были известны еще со времен античной науки. Однако математики Нового времени нашли способы работы с переменными величинами, ввели в качестве объектов исследования функциональные зависимости между ними. Открытия этого рода формулировались в недрах аналитической геометрии, дифференциального и интегрального исчисления. Здесь были созданы крупные обобщения и выработан абстрактный язык для новых образов математической величины, по отношению к которым обычные величины оказываются лишь частными случаями их проявления. Подобный обобщающий переход был совершен также в отношении эвклидова пространства - в связи с развитием неэвклидовой геометрии. В дальнейшем существенный поворот к исследованию новых математических объектов произошел в процессе разработки теории функций комплексного переменного, теории групп, теории множеств, математической логики, теории вероятностей, функционального анализа и т.д.

Фундаментальные математические обобщения, обеспечивающие «вал» математических открытий, возникали в ходе усложнения развития математики, проявившемся как внутреннее ветвление и разделение ее предмета. Так, появилась топология, дискретная математика. Особую значимость приобрела вычислительная математика, а затем возникла ее техническая ветвь - вычислительная техника. Кроме того, математические открытия влились в мощный поток математизации современной науки, связанный с появлением таких дисциплин как теория игр, теория информации, теория графов, теория оптимального управления.

Термин «открытие», используемый в науке, означает новое качество знаний вообще. В нем схватывается переход к знаниям, добываемым с помощью человеческих усилий и человеческого разума. С ним знанием связано становление науки как специфической формы мотания. Открытия свидетельствуют о снятии покрова тайны, которым отделено незнаемое и неведомое. Но они же показывают, что доступ к подобного рода тайнам имеется благодаря тем ключам, тем методам, которые создаются в лоне самой науки как организованной человеческой деятельности.

Для науки открытие - это всегда некое новое знание, полученное ил фоне ранее известных знаний. Областью рождения открытий является проблемное поле науки. Разрешение проблемы способно вывести познание к открытию.

Наиболее сложные проблемы имеют комплексный характер. Они решаются поэтапно. В этом случае открытия распределены во времени и возникают в процессуальном единстве длительной исследовательской деятельности. Элементы открытия в такой ситуации обнаруживают себя в синтезе начала и конца научного исследования, формируются на базе генеральной цели исследования и аналитического плана ее достижения.

Крупные открытия ведут к расширению и преобразованию имевшихся до того знаний. В такой ситуации наука сталкивается с задачами логической перестройки знаний, решение которых связано с обоснованием места и роли новых знаний, с уточнением характера единства предметной области соответствующей науки, с постижением уровня общности вновь добытого знания и т. д. Это открытия, ведущие к парадигмальным преобразованиям в науке. Такого рода преобразования произошли, к примеру, в результате перемен, связанных с перестройкой механической картины мира в физике и созданием электродинамической картины. Основы электродинамики заложили Фарадей, Максвелл, Герц. Но решающие идеи внес Эйнштейн, который пересмотрел физические абстракции, связанные с понятиями движение, пространство, время. В результате кардинальным образом изменилась физическая картина мира. Аналогичным образом - через сеть новых идей, рожденных многими физическими умами, происходило утверждение квантово-механической картины мира. В частности, Н. Бор и Л. де Бройль обосновали идею корпускулярно-волнового дуализма. Н. Бор ввел принцип дополнительности. В. Гейзенберг сформулировал принцип неопределенности. Позже В. Паули ввел в квантовую механику принцип симметрии. Затем были заложены основы релятивистской квантовой механики (начиная с работ П. Дирака). В итоге развитие науки предстало как цепь открытий, реализованных в рамках мощной исследовательской программы.





В современной философии науки справедливо отмечается, что открытия в науке появляются в результате осуществления многоплановой деятельности. Когнитивный аспект этой деятельности включает гносеологические и методологические подходы и основания.

В контексте гносеологического подхода научное открытие традиционно связывается с постижением объективной истины. Но открытие как своеобразный феномен движения к истине фиксирует особый момент такого движения. Суть этого момента связана с выделением поисковой деятельности из круга широкой исследовательской работы ученых. Поиск же ведется в некоторой области неопределенности и неочевидности в отношении тех результатов, которые увенчают исследование.

В науке исследование может охватывать уже известный материал. Но в этом случае научная работа ведется, как правило, не на уровне открытия. Хотя и в данной ситуации сохраняется возможность получения побочных или случайных результатов, способных приобрести статус открытия. Тем не менее, магистральный путь науки, ведущий к открытиям, предполагает переход за границы уже освоенного мира. Движение познания в области неизвестного наталкивается на специфические трудности, поскольку не имеет опоры на известные образцы знания и на ранее применявшиеся методы исследования. Поэтому ученые могут пройти мимо той информации, которая вводит их в область открытия. И все-таки наука не уклоняется от пути открытия. Первым фактом для нее было открытие и осознание себя в системе культуры. Она установила свои особые нормы, правила, принципы, очертила в начале своего существовании границы предмета научного познания и наметила вектор своего движения от известного к неизвестному.

Кроме того, ученые усвоили из контекста культуры, из своего опыта, из культурного опыта других людей, что открытия - это важная сторона реального научного познания. Наука погружена в поток открытий. Поэтому ученые сами живут ожиданиями открытий, им свойственен порыв к открытиям, они несут в себе призвание и тяготу открытий.

Методологическое своеобразие научного открытия состоит в том, что оно совершается в системе научной деятельности, которая ориентирована на разрешение определенной научной проблемы. Дате отметим, что открытие рождается в большом цикле научного метода. Его характеристика включает: определение перспективного и актуального направления научного поиска, выдвижение и обоснование некоторой проблемы, построение гипотезы о природе тех трудностей, которые препятствуют решению проблемы. Далее используется классификация стандартных подходов, предпринимаются попытки выйти за рамки стандартов. На данной стадии предлагаются идеи нестандартного решения. Вместе с тем, опробываются разного рода аналогии и ассоциации, соотносимые с уже известными решениями. Чаще всего ученые выражают новую идею своеобразным языком, она «столбится с помощью новых обозначений. Главное же внимание уделяется поиску критериев эффективности новой идеи, по ним сопоставляются результаты возможных решений, уточняется их иге и значение. Здесь же определяется, насколько можно продвинуться в решении исходной проблемы. Чтобы ученые смогли «зацепиться» именно за открытие, важно установить, что найдено не частное, специфическое решение, что решен не отдельный аспект задачи, и налицо серьезный результат, поднимающий научное знание на иной уровень понимания той задачи, которая была выдвинута в начальный период поиска.