Добавить в цитаты Настройки чтения

Страница 35 из 44

Новый поворот в науке связан со сквозной разработкой в ней темы безопасности. Идет разработка концептуальной платформы безопасности для современного человечества. Вырабатываются методы прогноза, предупреждения и управления разнообразными рисками, с которыми сталкивается новейшее общество. Выявлены различные аспекты безопасности, в том числе военная, экологическая, биологическая, радиационная, информационная и др. Идет осознание того обстоятельства, что в этой области требуется зачастую разработка уникальных проектов, рассчитанных на избирательное функционирование крупных искусственных систем, обеспечивающих противодействие масштабным рискам и создающих условия для устойчивого развития человечества.

Революционным для современной науки является формирование устойчивой цепочки: исследование, расчет, наблюдение, воздействие на объект, технология. Причем технологичными становятся даже экзотические открытия. Такой путь проделало, например, открытие и применение фуллеренов, которые впервые были обнаружены в недрах космической материи.

Возникает положительная связь между звеньями научной работы. Процесс идет как эстафетный: открытие эффекта - создание аппаратуры и приборов на базе этого эффекта - использование аппаратуры в других областях науки - новые, подчас сенсационные, открытия в этих областях - появление подлинных взрывов и переворотов в соответствующих сферах науки. Сегодня в рамках подобных эстафет ожидаются взрывы в генетике, медицине, микроэлектронике.

Добавлю, что в науке сегодня осуществляется мощное технологическое сопровождение фундаментальных исследований. Показательно, например, что на коллайдере RHIC (работает на тяжелых релятивистских ионах золота) предпринята попытка в лабораторных условиях воссоздать процесс Большого взрыва нашей Вселенной. Необходимо отметить также возникновение уникальных средств изучения уникальных объектов. К ним относятся, например, некоторые средства изучения Земли: сверхглубокие скважины (9 км - в Германии, 12 км - на Кольском полуострове); появились глубоководные аппараты для исследования океана; пошли по уникальным маршрутам атомные ледокольные суда, а ледокол «Арктика» покорил Северный полюс.

Революционный потенциал современной науки воплощается в серии новейших технологических прорывов.

Прорыв в средствах связи

Традиционно в мире используются радиосвязь, телеграф, телевидение. Новый рывок оказался возможным с появлением световой (оптической) связи. Она возникла в 1960 г. В то же время начали шествие лазеры. Использование для связи микронных волн видимого света позволило многократно уплотнить передаваемую по кабелю специального назначения информацию. В качестве такого кабеля было предложено использовать длинные стеклянные волокна, а затем - двухслойные световоды и световоды из чистого кварцевого стекла. В 1988 г. была проложена первая трансатлантическая BOJ1C ТАТ-8. По ней осуществлялись одновременно 600000 тысяч телефонных разговоров вместо 36 по проводному кабелю. В течение 2000 г. проложена ЛOBC «Москва - Санкт Петербург - Стокгольм», которая обеспечивает еще и доступ в Интернет. В настоящее время число пользователей Интернет через BOJIC превышает один миллиард человек.

Еще один рывок в этой области обеспечен развитием спутниковой связи и спутниковых средств навигации. Развитие данной области тесно сопряжено с прогрессом космонавтики. Искусственные спутники Земли используются для передачи и приема различных сигналов и информации (о внутреннем состоянии космических объектов, об их местоположении на орбите, передаются телевизионные сигналы о космических съемках и т.д.). В последней четверти XX в. началось использование уникальной системы спутникового глобального позиционирования (GPS). Правительство США потратило на создание этой системы десятки миллиардов долларов. Современная GPS состоит из трех сегментов: космического, сегмента контроля и пользовательского сегмента. В нее входят 24 спутника, которые находятся на 6 орбитах. На орбиту выводятся и дублирующие спутники. На Земле расположены станции наблюдения и ведущая станция (в объединенном центре управления космическими системами военного назначения). Основной потребитель информации этой системы - Министерство обороны США. Приемники информации установлены на всех боевых и транспортных самолетах и кораблях, а также в крылатых ракетах и в системах наведения новых управляемых авиабомб.





Аналогичная система - ГЛОНАСС - была создана и в СССР. Ее космический сегмент охватывает 24 спутника, размещенных на трех разных орбитах. Однако в последние годы развитие этой системы замедлилось. Долгое время она была закрыта для гражданских пользователей. Но с 2017 года к ней подключаются все автомобили в России.

Энергетический прорыв

Во второй половине XX в. бурно развивалась наукоемкая энергетика. Известно, что в основе энергетики лежит преобразование различных видов энергии (механической, тепловой, электрической и др.). Выработка контролируемой энергии достигается с помощью сложных технических устройств, использующих разнообразные процессы, открытые наукой.

В современной техногенной цивилизации главным источником энергии служит углеводородное сырье. Однако его запасы ограничены, и потому взоры ученых обратились к использованию альтернативных источников: лучистой энергии Солнца, геотермальных вод, энергии ветра, колебаний вод морей и океанов и пр. В качестве принципиально нового источника рассматривается прирученная атомная и термоядерная энергия. В этой области первоначально была использована контролируемая реакция цепного деления урана. В 1954 г. была построена первая атомная электростанция и тем самым доказана возможность производства электрической энергии на основе расщепления ядер урана.

Для создания энергетических сооружений нового типа пришлось решать комплекс новых физических, химических, технологических проблем. Энергетическая эффективность деления урана была обоснована тем, что при распаде одного его грамма выделяется столько же тепла, сколько при сгорании трех тонн каменного угля. Но технологический эффект удалось получить, когда были сконструированы и построены специальные реакторы. Сегодня есть печальный опыт эксплуатации реактора типа РБМК (на медленных нейтронах) и достаточно успешный опыт работы реакторов ВВЭР. После чернобыльской катастрофы ученые начали сомневаться в безопасности эксплуатации АЭС. Законную тревогу проявляет и население. Однако оптимистические подходы к развитию ядерной энергетики сохраняются. В последние годы много внимания уделяется созданию реакторов на быстрых нейтронах (реакторы-размножители). В них используется уран-238, но для получения не энергии, а горючего. Этот изотоп урана хорошо поглощает быстрые нейтроны и превращается в плутоний-239. Появляется вторичное ядерное топливо, которое можно использовать в дальнейшем. Здесь нет зон высокого давления, в качестве теплоносителя применяется жидкий натрий, разработаны несколько защитных оболочек. Специалисты полагают, что реакторы на быстрых нейтронах способны обеспечить человечество теплом и электроэнергией на ближайшее тысячелетие.

Разрабатываются также энергетические программы по использованию термоядерных реакций. Дело идет о создании уникальных установок, предназначенных для получения колоссальной энергии, которая выделяется пока лишь при опустошительном взрыве водородной бомбы.

Учеными установлено, что для осуществления термоядерной реакции необходимо соблюдение нескольких условий. Например, для реакции синтеза тяжелых ядер водорода нужна температура порядка 100 миллионов градусов. Такой перегрев приводит к появлению плазмы - смеси свободно двигающихся положительных ионов и электронов. Нужна также высочайшая плотность плазмы (выше ста тысяч миллиардов частиц в кубическом сантиметре). К тому же реакцию надо сохранить во времени не менее одной секунды.