Добавить в цитаты Настройки чтения

Страница 33 из 44

Эта научная революция совпала с эпохой бурного развития индустриального, а затем и постиндустриального общества. Вместе с тем она оказалась сопряжена с крутой модернизацией такой общественной структуры, как образование. Она воплотилась также в освоение глобальных пространств и космических просторов. Историки науки справедливо отмечают также рост ее темпов и масштабов в сравнении с предшествующими революциями. Со своей стороны отмечу, что ускорению развития науки содействовали новые факторы. В их числе надо назвать: ускорение социальных процессов, расширение рыночных форм хозяйствования, становление единой истории человечества; резкий рост ресурсного поля человеческой деятельности, а также формирование потребности в контроле, регуляции и управлении новыми масштабными ресурсами (биоресурсами, энергетическими и др.). К дополнительным факторам следует отнести и потребности военной и оборонной сфер. Наука в своем бурном росте зачастую сливалась с милитаризацией общества.

В когнитивном плане третья глобальная научная революция утвердила основы неклассической науки и соответствующий им тип рациональности. Одна из новых фундаментальных рациональных идей связана с утверждением, что в научном познании объект не присутствует в его природно-девственном состоянии. Напротив, всегда надо учитывать взаимодействие объекта и средств познания. Квантовая физика ввела принцип взаимодействия объекта с прибором. Этим утверждалась необходимость корреляции между знаниями об объекте и своеобразием средств и методов, которые используются в конкретной исследовательской ситуации.

Далее. В научном познании получил признание принцип неопределенности (В. Гейзенберг), основанный на невозможности предельной точности измерений и на неустранимости возмущающего воздействия исследовательских средств на состояние изучаемого объекта.

После А. Эйнштейна утвердилась тенденция к использованию мысленных экспериментов и к изучению виртуальной реальности, сконструированной научным разумом. Вместе с тем, благодаря А. Эйнштейну, в науку вошло представление о корпускулярно-волновом дуализме и об электромагнитном поле как особом виде материи, соединяющем в себе свойства непрерывности и прерывности. Этим закладывались основы для пересмотра старой картины мира. Но, в то же время, менялись философско-методологические принципы научного объяснения и преобразовывались схемы построения научных теорий.

Философы науки и ученые поняли, что теории не возникают чисто индуктивным путем из эмпирического материала. Подобный материал организуется и объясняется в соответствии с определенными способами его видения, задаваемыми некими метатеоретическими соображениями, возникающими на уровне картины мира и идеалов познания.

В период революционной ломки науки осуществляется также перегруппировка старых представлений о реальности, о методах и схемах познания. Часть из старого багажа устраняется, но включаются новые элементы, и решается задача преодоления трудностей, противоречий, парадоксов, с которыми сталкиваются старые теории при осмыслении новых научных явлений и фактов. Философы и историки науки справедливо отмечают в этой связи как необходимую ту работу, которая была проделана по переосмыслению понятий пространства и времени (в связи с возникновением теории относительности), детерминизма и причинности (в связи с появлением квантовой теории), системности и информации пр.

С середины XX столетия получила признание идея, что каждая наука способна конструировать собственную научную реальность и имеет с ней дело в своих средствах. Теперь принимается тезис о плюрализме достоверных теорий в отношении изучения одного и того же объекта. Способы организации подобных теорий составляют когнитивное поприще современной науки.

Отечественный исследователь проблем науки B.C. Степин обнаружил, что для научной революции, для преобразования картины реальности и норм познания, в принципе, не обязательно, чтобы в науке были зафиксированы серьёзные парадоксы. Преобразование ее оснований может осуществиться за счет переноса парадигмальных установок и принципов из смежных наук, вступающих в междисциплинарное общение. Поставщиками таких установок обычно становятся лидеры науки. Их идеалы и нормы нередко приобретают общенаучное значение. Использование принятых таким путем схем объяснения помогает найти нетривиальные результаты в других науках. Так, в XX столетии произошло обогащение содержания многих наук за счет внедрения идей системности, информации и др.





Активизация жизни научного сообщества в XX столетии, идейная борьба между различными школами, наличие различных способов генерирования ими знаний показали, что в науке нет однолинейного развития, а в период научной революции осуществляется принципиальный выбор среди разных направлений роста знаний. Как оказалось, в науке сталкиваются несколько возможных путей развития, которые, однако, не все реализуются в действительной научной истории. Так, А. Эйнштейн искал иную интерпретацию квантовой механики, нежели та, которую приняла копенгагенская школа. По его же пути пытался продвинуться Д. Бом в своих поисках «скрытых параметров» и в попытках устранения статистического характера квантово-механического описания. Аналогично альтернативный поиск (по отношению к максвелловскому пути развития физики) вел Р. Фейнман, пытаясь разработать физическую картину мира, в которой взаимодействие зарядов изображалось бы как передача сил с конечной скоростью без представлений о материальных полях (с этой точки зрения он строил квантовую электродинамику в терминах интегралов по траекториям).

Интересно, что сами физики, создавая новые картины реальности в XX веке, не считали, что они вступают друг с другом в жесткое противоборство, не требовали авторитета абсолютной истины для своих теорий. В новой ситуации срабатывал стиль мышления, в котором проявлялся неклассический тип рациональности. Согласно его фундаментальным установкам мышление воспроизводит объект как вплетенный в человеческую деятельность. Оно строит образы объекта, коррелируя их с исторически сложившимися средствами постижения реальности. В подобном контексте никакие научные знания не рассматриваются в качестве единственно правильных. В иных традициях, в рамках другого языка научного описания, в других познавательных ситуациях они могут представлять иной срез реальности, соотнесенный с тем же по существу объектом. Здесь признается, что наука не дает мгновенного снимка объективной реальности. Ее знания только объективно относительны.

Структура знаний в период третьей революции также преобразуется. В ней широко представлены своеобразные «посредники», которые встраиваются между познающим субъектом и объектом. В свое время Н. Бор апробировал методологический подход, в котором признаки изучаемого объекта задавались через экспликацию операциональной схемы его познания. В квантовой физике эта схема применялась на базе представления о корпускулярно-волновом дуализме проявления микрообъектов, а также учитывала принцип дополнительности - в силу макроскопической природы приборов.

Важный урок исторического развития науки в XX веке состоит в том, что содержание научной революции нельзя сводить только к когнитивным преобразованиям. Эта революция протекает в контексте главных процессов развития общества. Ее бурные проявления обнаруживаются и в системе знаний, и в системе деятельности ученых, и в системе социальных институтов, свойственных науке.

Научная революция превратилась в перманентный процесс и продолжает набирать обороты уже в новом столетии. Сегодня она характеризуется возможностями возникновения общества, основанного на знаниях, а также осуществлением процессов создания технологической базы пятого поколения. Кроме того, выявляется экологический и гуманитарный характер этой революции. Она приняла уже международные масштабы, но реализуется пока только в высокоразвитых странах, вставших на путь современной модернизации.

11. ПЕРСПЕКТИВЫ СОВРЕМЕННОЙ НАУКИ