Страница 29 из 33
Вместе с тем, момент однозначной определенности предшествующим состоянием последующего, фиксируемый данной идеализацией, является хорошим приближением в описании поведения ряда реальных материальных систем. Прежде всего, это сфера объектов, исследуемых классической механикой. Использование идеализации такого рода оказывается весьма полезным и в кибернетике, где она играет существенную методологическую роль, выступая инструментом построения строгой однозначной теории. Благодаря этому значительно облегчается осуществление столь важного для кибернетики процесса формализации.
Отмечая плодотворность метода выделения существенных переменных как способа упрощения, следует подчеркнуть его односторонность и соответственно бедность того представления о сложности, на которое он опирается. В самом деле, реализация этого подхода состоит в отбрасывании, игнорировании момента взаимосвязи системы, а тем самым и внешних отклонений, которые выступают в качестве результата такого взаимодействия. Между тем, совершенно очевидно, что проблема сложности заключается также в том, что система испытывает влияние окружающей среды. Следовательно, возникает вопрос о средствах контроля этого влияния.
Соответствующий понятийный аппарат формируется в рамках системного подхода, ориентированного на идею функциональности, трактовка которой дана в предыдущем параграфе. Сохраняя общий подход с позиций определенности, современный системный метод учитывает и неопределенность, что обогащает собственно понимание сложности. Его реализация, будучи связанной с отказом от модели, представляющей форму однозначной детерминированности, опирается на признание объективного характера случайности. Не уточняя здесь содержания данной категории, замечу лишь, что с ней правомерно связывать момент неопределенности, или говоря языком кибернетики, энтропию в информационном смысле слова.
Конкретным примером включения неопределенности в рамки известной определенности может служить реализация принципа обратной связи, лежащего в основе устойчивости широкого класса сложных материальных систем. В данном случае с известной точностью задаются границы интервала, характеризующего так называемое гомеостатическое состояние системы, поддержание которого связано с минимизацией ошибки отклонения значений выходных параметров системы от входных.
С этих позиций оказывается возможным выделить особый тип устойчивости и определенности системы, относимый к более богатому уровню сложности, нежели тот, с которым имела дело классическая наука. Для овладения этим уровнем разрабатывается новый класс моделей, ориентированных на учет неопределенности и существенно отличающихся от моделей однозначного детерминизма, лежащих в основе построения дифференциальных уравнений (в классической физике, механике и т. п.). В качестве руководящей идеи здесь выступает понятие вероятности.
Представляет особый интерес оценка понятия вероятности как специфической метасистемной характеристики, приложимой к достаточно богатому уровню сложности. Такая оценка весьма неоднозначна. Можно отметить, скажем, что Эшби не выделял вероятностные системы из класса причинностных (по его терминологии - машиноподобных). В то же время Ст. Вир указывал на специфический класс сложности, определяя его посредством понятия «вероятностная система» [161]. Основание подобного расхождения следует искать в различном понимании природы вероятности, в особенностях трактовки отношения понятия «вероятность» к принципу детерминизма, к категориям причинность, необходимость, случайность и др.
ЗАКЛЮЧЕНИЕ
В предлагаемой работе раскрываются теоретико-методологические основания проблемы сложности, которая представляет собой одну из фундаментальных проблем всей современной науки.
Авторский метод, реализованный в этой монографии и определяемый как метод двойной рефлексии, учитывает два уровня истолкования проблемы сложности. Один из них связан с выявлением общенаучных регулятивов исследования сложных и сверхсложных объектов, которые стали в центр внимания современной науки. Другой уровень связан с разработкой философско-методологической тематики, и его средства обеспечивают модификацию базовых категорий эпистемологического анализа общенаучных методов познания.
Определены исторические вехи дискуссии о понятии «вероятность», отмечены главные аргументы и дан критический анализ классической, частотной и аксиоматической концепций вероятности. Использованы малоизвестные в отечественной литературе материалы из произведений Р. Мизеса, Г. Рейхенбаха, Г. Фройденталя.
Показано, что с понятиями «вероятность» и «система» и основанными на них методами связывается прежде всего способ преодоления ограниченности классического подхода к описанию объектов, поведение которых характеризуется сложностью и неопределенностью.
Исследованы условия пересмотра традиционных идеализаций, базирующихся на принципе детерминизма. Дана характеристика идеи неодетерминизма, на базе которой строится программа сохранения научного рационального мышления в современной неклассической науке. В рамках этой идеи указаны пути формирования концептуальных моделей, соответствующих задачам исследования сложных систем, развернуты аргументы в пользу общей концепция детерминизма, органически соединяющей принципы определенности и неопределенности в едином концептуальном пространстве.
Эксплицирована гносеологическая функция общенаучного понятия «система», которая связывается с упрощением сложных познавательных ситуаций. Причем такое упрощение ориентировано на сохранение детерминизма в тех случаях, когда классическое представление о детерминизме оказывается неприменимым.
Общеметодологическая характеристика проблемы сложности развернута на фоне структурно-функциональных представлений, которые уточняются на базе принципа неисчерпаемости материи вглубь. Всеобщее содержание этого принципа, рассматриваемое с позиций единства качественных и количественных характеристик, характеризуется в качестве исходной посылки как для включения идеи неопределенности в рамки системных представлений, так и основанием снятия неопределенности одного уровня сложности на другом, более общем уровне.
С учетом исторического аспекта исследована связь понятия «система» с исходной концептуальной моделью статистических закономерностей, именуемой массовым случайным явлением. Здесь выявлен более общий характер системных представлений в сравнении с этой моделью. Понятие массового случайного явления правомерно рассматривать в качестве специального случая той формы, которая задается существенными моментами понятия «система».
Показано, что развитие системных представлений правомерно рассматривать в качестве платформы для обогащения исходного понятийного фундамента вероятностных идей и методов. Сделан вывод о наличии историко-научной тенденции сближения, взаимопроникновения категориального аппарата системной и вероятностной концепций.
ПРИМЕЧАНИЯ
1. Лаплас П. Опыт философии теории вероятностей. -М.: Книжный дом «ЛИБРОКОМ», 2011. - С.15.
2. Бернулли Я.А. Ars conjectandi, 4.IV. -Спб.: 1913. С.23.
3. Лаплас П. Опыт философии теории вероятностей. -М., с.11-12.
4. Чупров А.А. Очерки по теории статистики. - М.: М. и С. Сабашниковы, 1909. - С.155.
5. Мелюхин С.Т. О соотношении возможности и действительности в неорганической природе. - В кн. Проблема возможности и действительности. - М-Л.: Наука,1964 - С.29 - 30.
6. Пятницын Б.Н., Метлов В.И. Философские проблемы вероятностных методов исследования.// Проблемы логики и теории познания. Изд-во МГУ, 1968. - С.277.
7. Хинчин А.Я. Учение Мизеса о вероятностях и принципы физической статистики.// УФН, 1929, вып.2.
8. Mises R.V. Wahrscheinlichkeit, Statistiks und Wahrheit. Wien, 1951, s.IV.
9. Мизес P. Вероятность и статистика. - М-Л.: Госиздат, 1930. - С.16.