Страница 3 из 30
РИСУНОК 12–1
В ситуации, когда издержки равны нулю, данная фирма будет продавать количество товара Qn по цене Pn. С положительными издержками, будет продано количество товара Qc по цене Pc, в соответствии с маргинальным принципом. Отметьте, что, при количестве товара Qc, функция прибыли π1 находится в своём максимуме.
Чтобы проанализировать проблему дуополии, Курно разработал новый инструмент графического анализа, кривую реакции, одна из которых представлена на Рис. 12–2. На Рис. 12–2 изображена выпуклая функция реакции АА, которая делает наглядным выбор А количества производимой продукции относительно к выбору В. Определённо, она показывает, какой объём выпуска выберет фирма А, чтобы максимизировать прибыли при заданном объёме выпуска фирмой В. Например, если В выбирает выпускать Ob0, А – чтобы максимизировать прибыль – пожелает назначить определённую цену за объём выпуска Oa0. Если, с другой стороны, В производит количество Ob1, А будет приведена мотивом максимизации прибыли к производству меньшего количества Oa1, и так далее для всех прочих количеств, которые могла бы производить В. Помимо этого, какое бы количество не выбрал производитель В, А думает, что оно будет постоянным, и поэтому А действует таким образом, чтобы максимизировать его или её прибыли.
Какое количество будут производить А и В в конечном итоге? Ясно, что проблему невозможно решить без добавления функции реакции В, показывающую те виды реакций В, которыми он ответит на выпуск А. Две функции объединены на Рис. 12–3, где функция реакции В определена в той же манере, в какой была выше определена функция для А.
РИСУНОК 12–2
Кривая реакции продавца А описывает максимизирующий прибыль уровень выпуска готовой продукции для А, если задан каждый уровень выпуска готовой продукции продавцом В. Таким образом, если В решает производить количество продукции b0, А максимизирует свои прибыли, выпуская а0
Предположим, что В решает производить некоторый объём продукции – скажем, Ob0 – будучи уверенным в том, что А сохранит объём продукции на уровне Oa0. В будет, затем, максимизировать свои прибыли при объёме продукции Ob0. Исходя из предположения, что В будет держать выпуск продукции на уровне Ob0, А будет максимизировать прибыль, производя Oa1. Такой поворот заставит В переоценить ситуацию и увеличить выпуск своей продукции до Ob1, что максимизирует его или её прибыли, если исходить из предположения о том, что А сохранит объём своей продукции на уровне Oa1. Однако, предположение оказывается необоснованным (хотя ни В, ни А, предположительно, никогда этого не поймут), и процесс изменения объёма выпуска продукции в целях максимизации прибыли продолжается, как отмечено стрелочками на Рис. 12–3. Точка Е (Рис. 12–3) представляет собой равновесное решение для фирм А и В, т. е., такое, в которое они всегда возвращаются, если отклоняются от него. В точке Е оба этих дуополиста делят прибыли (Курно выразил этот объём прибылей математически) и назначают одинаковую цену, которая ниже той цены, которой можно было бы достичь в условиях простой монополии (факт, который отметил сам Курно), но выше, чем цена, назначенная в условиях конкуренции, со многими продавцами. Курно скоро указал на то, что эта коллизия между двумя конкурентами выльется в результате в производство монопольного типа с двусторонним разделением монопольного дохода. Но Курно точно определил объём выпускаемой продукции для дуополии: он составлял бы две трети произведённой на конкурентном рынке продукции. Фактически, общее выражение для выпуска продукции было бы n/n + 1, умноженное на объем продукции в условиях конкуренции. Таким образом, если бы на рынке было пять продавцов, проданное количество продукции составляло бы пять шестых от произведённой в условиях конкуренции продукции. Если бы было 2 000 продавцов, выпуск, очевидно, приблизился бы к конкурентному объёму. В такой манере, Курно соотнёс свою теорию дуополии с конкурентной моделью.
РИСУНОК 12–3
Начиная от точки J (когда объём выпускаемой В продукции равен b0), стрелки прочерчивают путь к стабильному рыночному равновесию (точка Е) через последовательные определения объёмов выпускаемой продукции на основе сопоставлений.
Помимо теории дуополии, Курно дал множество прочих важных проницательных догадок в области экономической теории. В их числе были (1) чёткая формулировка простой конкурентной модели; (2) очень хорошо развитая модель комбинированного и производного спроса (для меди и цинка при производства латуни); и (3) последнее, но не по значимости, обсуждение стабильности разных видов экономического рыночного равновесия, принимающее в расчёт слабые колебания количества и цены. Книга Курно была, одним словом, исполнена новых идей.
И всё-таки в первую очередь привлекали внимание теоретиков вклады Курно в метод и в монопольно-дуопольную теорию. И эти идеи, особенно, относящиеся к дуополии, привлекли некоторых критиков. Как было ранее отмечено, Эдджуорт и Бертран повозились с моделью дуополии Курно, изменив множество из её посылок. Почему, например, дуополист будет принимать во внимание количество, а не цену своего соперника, в качестве постоянной величины? Более относящийся к существу дела вопрос: как может А (например) продолжать предполагать, что выпуск продукции В останется постоянным, несмотря на повторяющиеся свидетельства обратного? Что, если имеется ограничение на выпуск продукции для одного или обоих дуополистов? И так далее.
Многие из этих проблем были, конечно, решены, но частью сохраняющегося очарования модели Курно является то, что решение одной задачи ставит ещё две. Модели олигополии, двустороннее заключение сделок и альтернативные посылки, касающиеся предположительных отклонений в современной теории игр были созданы по образцу моделей Курно. Его простая модель была и остаётся купелью многих идей экономической теории. Столь мощные идеи, конечно, ставят его в первый ряд экономических теоретиков. И даже более того, Курно обладал грандиозным видением того, чем могла бы быть экономическая теория – набором инструментов, укоренённых в эмпиризме, которые являлись бы организующими принципами при анализе бесчисленного множества экономических проблем. Это знание, столь трагически обойдённое вниманием его современниками, вознесло его на пик достижений, которых редко удавалось добиться в истории экономической теории.
Жюль Дюпюи (1804–1866)
В то время как Курно разрабатывал основы микроэкономики, солидный французский институт – Школа Гражданской Инженерии – собирался породить человека, который объединит инструментарий микроэкономики и теорию полезности и тем заложит основы экономики всеобщего благосостояния, общественных финансов и теории общественного блага. Подобно Курно, этот знаменитый французский инженер думал об экономике как об одном из побочных занятий, а не как о профессии. Благодаря своему прекрасному техническому образованию, он привнёс острое практическое понимание сути исследуемых явлений в анализ экономических проблем.
Арсен-Жюль-Эмиль-Жювеналь Дюпюи родился 18 мая 1804 года, в Фоссано, Италия, когда эта область находилась под владычеством Франции. В возрасте десяти лет Дюпюи с родителями вернулся во Францию. Там он продолжил своё образование в средних школах в Версале, Луи-ле-Гран и в Сен-Луи, которую он блестяще закончил, выиграв приз по физике в большом соревновании.