Добавить в цитаты Настройки чтения

Страница 5 из 18

Вполне правильно незаслуженно игнорируемое указание Шопенгауэра на то, что объяснение цвета предметов тем, что они являются как бы однородными источниками света, находится в вопиющем противоречии с действительностью. Каждому известно, что желтый цвет самый яркий; по своей светлоте он приближается к белому; измерение дает 0,9 светлоты белого. В спектре же желтый цвет занимает не больше, как двадцатую часть всего спектра. Поверхность, которая отражает одну двадцатую часть падающего на нее света, мы называем черной. Хорошие типографские чернила (тушь) обладают примерно таким отражением. Ни в какой степени не может быть и речи о том, чтоб желтый цвет различных поверхностей обусловливался отраженным ими только желтым светом.

Учение Шопенгауэра имело следствием только то, что Гёте отказался от него. Непосредственного влияния на науку оно не оказало. Только два поколения спустя Эвальд Геринг повторил его физиологическую часть, использовав ее для своей теории. Целое столетие прошло с тех пор как научно-приемлемая часть его теории – о качественном различии деятельности сетчатой оболочки была включена в современную науку нашим учением о «цветовом полукруге» (см. ниже). Причина прежде всего в том, что Шопенгауэр оставил без дальнейшей разработки свой юношеский труд. Непосредственно после него он принялся за работу над своим главным произведением и потерял всякий интерес к науке о цветах. Вот почему долгое время никто больше не занимался этим покинутым детищем. И те идеи, которые выплыли впоследствии и которые в основном совпадают с его теорией, нельзя приписывать влиянию Шопенгауэра, так как они все равно появились бы, если бы Шопенгауэр об этом ничего не думал и не писал.

Намеченный Гёте и Шопенгауэром переход науки о цветах из-под опеки физиков в руки физиологов находит свое осуществление в лице Гельмгольца который, обладая по преимуществу дарованиями физико-математического характера, в силу внешних причин, перешел к изучению медицины, в связи с этим, – физиологии. Он избрал предметом своего исследования, физиологию органов чувств; его основные познания оказали ему здесь ценнейшую услугу.

Здесь не место подробно распространяться о многочисленных и важных успехах, которыми наука обязана Гельмгольцу. Указать же на это мы должны здесь все же потому, что изучение цветов занимало небольшое место в его общей работе, и наши ссылки на него в связи с вопросами учения о цветах будут нередко носить отрицательный характер. Область зрительных восприятий у Гельмгольца была относительно слабо развита, и здесь он не чувствовал той потребности в исчерпывающем уяснении предмета, какая имелась у него в области абстрактно-математического мышления.

Мы видим поэтому, что наука о цветах физиологом Гельмгольцем опять-таки была отнесена в область физики больше, чем то следовало бы.

Гельмгольц, как и все физиологи и психологи настоящего времени, исходит из того положения, что однородные лучи или лучи с колебаниями одинаковой длины волны – суть действительные элементы всякого цветного зрения, а тем самым и науки о цветах. Для физика это вне сомнения. Биолог же должен поставить вопрос: влияли ли однородные источники света на превращение глаза из пигментного пятна кожного покрова в тонко устроенный, снабженный хрусталиком, глаз человека, и в чем заключалось это влияние. И он вынужден дать следующий ответ: нигде в природе глаз не имеет возможности воспринимать однородный свет; таковой имеется только в физических приборах. В природе имеются цвета, всегда обусловливаемые рядом смежных длин волн довольно различного числа колебаний. Так, спектроскоп заставляет нас признать между прочим, что чистейшая желтая поверхность и прозрачные желтые слои при анализе спектра таковых обнаруживают не только желтый свет, но и все более длинные волны спектра, вплоть до Фраунгоферовой линий F, а именно: красный, оранжевый, желтый, а также лиственный зеленый и часть морского зеленого. В этом – причина такой яркости желтого цвета. Вот почему наш глаз, который вначале только различал светлое и темное (как то показывает и ныне атавистический глаз лиц, страдающих полной цветовой слепотой), сумел дойти лишь до распознавания целых групп световых волн, но отнюдь не приспособлен к оперированию с однородными истопниками света. Все научные работы, проведенные с однородными световыми источниками, требуют поэтому переработки с новой физиологической точки зрения.

На все только что изложенное необходимо было указать для того, чтобы раз навсегда обеспечить правильный взгляд на исследование Гельмгольца. Физическая часть его работ мастерски изложена и безупречна; психофизиологическая же, наоборот, требует во многом переработки.

Результаты исследования цветов Гельмгольц излагает во втором томе своего труда по физиологической оптике[5]. Он приводит сначала точное описание спектра, т. е. устанавливает зависимость между длиной волн и цветовыми ощущениями, откуда становится ясным, что связь эта не однозначна. Тон цвета значительно изменяется к обоим концам; спектра в зависимости от силы света. Затем Гельмгольц переходит к смешанным световым волнам и указывает на тот факт, что можно получить одинаковые смеси из различных источников света и что при этом наш глаз совершенно не способен различать составные элементы, в то время как ухо обладает этой способностью и различает источники звуков при их смешении. Глаз не различает в белом цвете составляющих его отдельных однородных световых лучей, как отдельных цветов.

Очень важным является указание Гельмгольца на то, что смеси разных световых лучей следуют совсем другим законам, чем смеси различных красящих веществ. Прочно укрепились в науке введенные им здесь понятия слагательного (аддитивного) и вычитательного (субтрактивного) смешения цветов.

Большое значение имеет также установление им правильных пар дополнительных цветов:

красный – морская зелень (голубовато-зеленый),





оранжевый – ледяной синий,

желтый – ультрамарин-синий,

лиственно-зеленый – фиолетовый.

Вопрос о дополнительных цветах полстолетием раньше был, правда, разработан Вюншем, но об этом совершенно забыли. Даже новое указание Гельмгольца не было в состоянии уничтожить по сие время ошибочный взгляд на пары цветов, встречающийся еще у живописцев, красильщиков и печатников. Зависимость между длиной волн и дополнительными цветами Гельмгольц выразил числовым соотношением гиперболы. Всевозможные парные смеси он представил в виде таблицы.

Определив черный, серый и белый цвета как результаты отражения света (нулевое, частичное и полное), Гельмгольц взялся за решение проблемы систематизации цветов. Он пришел здесь к следующему выводу: «впечатление цвета, которое вызывается определенным количеством х любого смешанного света, может быть вызвано также смесью определенного количества белого света а с определенным количеством b какого-нибудь насыщенного цвета (спектрального или пурпурного) определенного цветового тона».

Это положение долгое время служило задерживающим фактором для развития науки о цветах. Из него заключали, – что делал и сам Гельмгольц, – что цветовой тон, чистота и светлота суть три элемента всякого цвета. Напрасно старались в течение полстолетия создать из этих трех элементов цветовое тело или дать правильно построенную систему всех возможных цветов.

Раньше всего нужно было устранить в вышеприведенном утверждении то молчаливое предположение, что «определенное количество х любого смешанного света» вызывает вполне определенное цветовое впечатление.

Геринг, посредством своего, ставшего знаменитым, опыта, доказал, что одно и то же количество света, в зависимости от среды, которая его окружает может казаться белым, серым и черным, желтый цвет может переходить в коричневый и т. д. Поэтому совершенно неправильно утверждать, что цвет определяется только качеством светового источника и количеством этого света.

5

Н. v. Helmholtz. Handbuch der physiologischen Optik. 3. Bände 4. Auflage.