Добавить в цитаты Настройки чтения

Страница 10 из 18

Поглощение зависит далее от состояния вещества. В то время как в газах часто наблюдаются узкие полосы поглощения, дающие линейчатый спектр, у жидкостей и растворов таковые очень редки. У жидких тел поглощение распространяется на большие части спектра, в границах которых оно непрерывно несколько меняется. К концам этих областей коэффициент прозрачности увеличивается и приближается к единице. Линейчатые спектры заменяются здесь спектрами, имеющими более широкие полосы поглощения с размытыми границами. Еще более равномерно и непрерывно распределяются области поглощения у твердых тел. Узкие линии поглощения очень редки, широкие, размытые полосы являются правилом. Эти факты имеют основное значение для биологического развития нашего цветного зрения, как уже и было указано нами выше. Дальше, при изложении учения о цветовом полукруге, будут изложены и правила, которые, сообразно с этим, определяют наше видение цветов.

Все цвета окружающих нас тел обусловливаются вышеизложенными явлениями. Прозрачные тела мы видим благодаря тем лучам света, которые, вследствие их частичного отражения с их поверхности, попадают в наш глаз. Когда разница в степени преломления (по сравнению с воздухом) мала, как, например, у различных газов, то такие тела не доступны нашему зрению. Если имеется частичное поглощение, то тела видятся нами как прозрачные цветные, как, например, цветные стекла, вода, многие драгоценные камни и т. д.

Если тело состоит из множества маленьких частиц с различными показателями преломления, то свет не может там проложить себе длинного прямого пути. Поэтому они не прозрачны. Если при этом нет заметного поглощения, то свет рассеивается и отражается; такие тела нам кажутся белыми.

Чаще всего в этом случае одной из составных частей такой смеси является воздух. При рассмотрении белых тканей под микроскопом мы видим прозрачные волокна, при рассмотрении белых порошков мы видим прозрачные кристаллики или частицы таковых; как те, так и другие заключают в промежутках между собой воздух. То же наблюдается и у всех других белых тел. Особенно характерно это для таких белых красящих веществ, как свинцовые белила, цинковые белила, мел и т. д. которые состоят из прозрачных, мелких, сильно преломляющих зернышек. Они кроют тем лучше, чем больше их преломляющая способность.

Хроматические (цветные) тела отличаются от белых только тем, что прозрачные кристаллики или волокна проявляют избирательное поглощение; непоглощенные же лучи отражаются и обусловливают цвет. Абсолютно непрозрачных веществ не существует; зато часты вещества с малым коэффициентом прозрачности. Непрозрачность большинства тел объясняется тем, что они состоят из оптическиразличных частиц довольно значительных размеров (немногим меньше 0,001 мм), которые дают сильное отражение и являются препятствием для прохождения света. У металлов мы наблюдаем особенности, обусловливающие их блеск; но и металлы при достаточном размельчении становятся прозрачными.

Таким образом, большинство цветов внешнего мира зависит от поглощательной способности твердых тел. Поэтому при спектральном анализе цветов тел мы видим, что их отраженный свет, который и является причиной их окраски, состоит из широкой полосы близких друг к другу световых волн. Рядом с ними находятся темные полосы или области поглощения. У ярких цветных тел эти области занимают приблизительно половину спектра. Очень часто мы встречаем область поглощения в середине спектра, как раз в зеленом цвете. Тогда отражаются световые волны обоих концов спектра, с одной стороны красные, а с другой – фиолетовые и синие. Эту смесь цветов мы воспринимаем целостно, как однородный цвет (как это бывает и при всех других смесях), и она дает нам ряд не встречающихся в спектре розовокрасных, синекрасных и пурпурных цветов. В дальнейшем мы будем иметь возможность их изучить. Красящие вещества естественного и искусственного происхождения с поглощением в зеленой части спектра встречаются весьма часто.

До сих пор рассмотренные нами свойства света выявляются в таких измерениях, которые велики по сравнению с длиной отдельной световой волны, и эта последняя не оказывала поэтому на них влияния. Но имеется еще и другая группа важных свойств, которые обусловливаются непосредственно длиною световых волн. Самое важное из них – диффракция света. Если мы пропустим солнечный свет через узкую щель в темную комнату, и в образовавшуюся узкую полосу света поместим волос или другой темный предмет, то получится не простая тень. Эта тень будет состоять из узкой средней линии, по обеим сторонам которой расположатся параллельные светлые и темные полоски, при более тщательном исследовании оказывающиеся хроматическими (цветными). В этом случае свет проходит не просто по прямой линии: его лучи, как будто «загибаясь», попадают в геометрическую область тени, отчего этот процесс и получил название «загибания» (Beugung), или диффракция света.

Если волос заменим узкой щелью, которую поставим параллельно первой щели, то увидим светлую среднюю линию. По обеим сторонам от этой линии симметрично расположатся темные и светлые полоски, которые становятся окрашенными и все более слабыми по мере удаления от средней линии.

Причина этого явления лежит в волнообразной природе света. Если две волны так проявляют себя, что понижение и понижение, или подъем и подъем совпадают, то они усиливают друг друга. Если же понижение одной совпадает с подъемом другой и наоборот, то эти волны уничтожают друг друга. Это явление называется интерференцией света.





Рис. 3

Рис. 3 дает представление о том, как образуются вышеупомянутые полоски. Согласно теории волн, щель, заполненная светом, действует как само светящееся тело. Представим себе, что из света, падающего на щель SS, взяты точки, e и d, тогда пути света по do и по ес будут иметь одинаковую длину; в точке О попадут одно на другое, подъем волны на подъем, понижение на понижение, и количества света сложатся.

В стороне от О, например, в С, находится точка, для которой пути и ес отличаются друг от друга наполовину длины волны. Там совпадут понижение одной и подъем другой, подъем одной и понижение другой, и волны, в результате этого уничтожат друг друга. Поэтому там получится темнота.

Еще дальше за С находится место, где разница между длинами путей составит полную длину волны. Там опять наступает сложение волн, т. е. яркий свет.

Таким образом, темные и светлые полоски чередуются друг с другом, но они ослабляются, так как количества света, падающие в стороны, все уменьшаются. Совершенно то же мы наблюдаем и по другую сторону от точки О.

Эти рассуждения будут верными только в том случае, если речь идет о свете одной определенной длины волны. Если же мы имеем дело с дневным светом или, как то обычно и бывает, с какими-нибудь другими неоднородными лучами, то от каждой длины волны должна получиться своя особая картина. Эти изображения не совпадут, так как чем длиннее волна, тем дальше отстоит точка С от средней точки О. Различным волнам соответствуют разные цвета; вместо чередования просто светлого и темного у нас получатся разноцветные полоски.

Если вместо простой щели применить целый ряд тесно соприкасающихся друг с другом щелей, «решетку», то явление соответственно этому расширяется. При этом получается разложение света, подобное тому, какое дает и призма, и при помощи решетки можно так же приготовлять спектроскопы, как и при помощи призм. Все-таки решетчатые спектры во многом отличаются от призматических. Во-первых, в решетчатых спектрах меньше всего отклоняются короткие волны, а длинные больше всего, в призмах же дело обстоит наоборот. Во-вторых, у решетчатого спектра цвета расположены пропорционально увеличивающейся длине волн так, что они в этом отношении построены строго закономерно. Призматические спектры, наоборот, показывают некоторое отклонение в том смысле, что одинаковым различиям волн соответствуют тем большие участки в спектре, чем волны короче. Другими словами, призматические спектры сильно растянуты в сторону синего и фиолетового, в сторону же красного они сильно сжаты по сравнению с решетчатым спектром и расположением, пропорциональным длине волн.