Добавить в цитаты Настройки чтения

Страница 12 из 24



Содержащая сапонины трава почечного чая (ортосифона тычиночного) и грыжника гладкого оказывает мочегонное действие.

Препараты тритерпенового сапонина семян каштана конского эсцина широко используются в консервативной терапии хронической венозной недостаточности для профилактики и лечения осложнений – тромбозов вен, нейротрофических расстройств, в том числе трофических язв голеней.

Ресвератрол (гидроксистильбен красного винограда) проявляет высокую антиоксидантную активность, в частности, в защите ЛНП от аутоокисления и Cu-индуцированной оксидации, ингибирует агрегацию тромбоцитов, улучшает метаболизм арахидоновой кислоты, ограничивая продукцию противоспалительных цитокинов, улучшает состояние сердечно-сосудистой системы, перспективен в качестве кардиопротекторного средства (Барабой В.А., 2009).

Флавоноиды – фенольные химические соединения с выраженными Р-витаминными свойствами, относящиеся к производным хромона с различной степенью окисленности хромонового цикла. В зависимости от этого различают флавоны, флаваноны, катехины, флаваны, халконы. гиперозиды и др. В свободном состоянии встречаются только отдельные группы флавоноидов (катехины, лейкоантоцианидины). Биофлавоноиды принимают участие в процессах дыхания и оплодотворения растений, оказывают антиоксидантное, антитромботическое, радиопротекторное действие, положительно влияют на функцию сердечно-сосудистой и пищеварительной систем, печени, почек, на мочеотделение, кроветворение и т. п. Флавоноиды широко распространены в растительном мире. Особенно богаты ими листья гречихи, цветочные бутоны софоры японской, листья и плоды черной смородины, аронии (черноплодной рябины), черной бузины, рябины обыкновенной, трава зверобоя, крапивы, плоды облепихи, семена конского каштана, трава фиалки трехцветной и др.

Флавоноиды участвуют в переносе электронов в дыхательной цепи митохондрий, локализуются в цветках, листьях, корнях, коре и плодах, часто придавая им желтую окраску. Венгерский биохимик Сент-Дьерди в начале века выделил из лимонов желтые вещества – цитрины, эффективные при повышенной ломкости сосудов и связанной с этим склонности к кровотечениям.

В зависимости от степени окисленности флавонового ядра различают:

• флавоны (апигенин, лютеолин) из лимонов, апельсинов и грейпфрутов;

• антоцианы из ягод и овощей;

• флавонолы (кверцетин, кемпферол, мирицитин) из фруктов и овощей, хвои;

• флаваноны (гисперитин, нарингенин) из цитрусовых и клубники;

• флаванолоны (катехины) из яблок, чая и винограда;

• изофлавоны (генистеин, дайдзеин) из сои и других бобовых.

Флавоноиды:

• оказывают Р-витаминное действие (от лат. permeability – «проницаемость») – уменьшают проницаемость капилляров, при этом уменьшается отечность тканей, повышают прочность стенок капилляров (рутин, кверцетин, катехины чая), улучшают микроциркуляцию и трофику тканей;

• уменьшают проницаемость и ломкость капилляров за счет подавления активности фермента гиалуронидазы, контролирующего проницаемость сосудов, восстанавливают упруго-эластичные свойства венозной стенки, повышают ее тонус;

• уменьшают агрегацию тромбоцитов (риск тромбоза);



• снижают чувствительность болевых рецепторов (обезболивают);

• оказывают противовоспалительное действие (подавляют синтез и высвобождение провоспалительных цитокинов);

• повышают устойчивость тканей к гипоксии.

Установлена возможность фенольных соединений опосредованно влиять на Р-витаминное действие, связанное со стабилизацией ими аскорбиновой кислоты и адреналина, которые, в свою очередь, уменьшают проницаемость и увеличивают плотность капилляров.

Многочисленные исследования показали, что в экспериментальных и биологических системах флавоноиды проявляют антирадикальное и антиокислительное действие, чем и объясняется способность кверцетина ингибировать термическое окисление жиров. При этом флавоноиды активны в отношении радикалов, возникающих в липидной и водной фазе, и ингибируют процессы ПОЛ как на стадии инициации, взаимодействуя с активными формами кислорода 02’ ОН’, o~, HOCl, так и на стадии продолжения цепи, выступая донорами атомов водорода для липидных радикалов LO и LOO (Корсулькин Д.Ю., 2007).

Мембраностабилизирующий эффект флавоноидов каштана конского и их окислительно-восстановительные свойства сохраняют функционирование ферментов тканевого дыхания, способствуют утилизации кислорода и обеспечивают синтез АТФ в митохондриях клеток, это важно в условиях гипоксии и гипертрофии миокарда. Одним из важнейших фармакологических аспектов действия флавоноидов является их умеренное кардиотоническое действие, стимуляция инотропной функции миокарда и увеличение сердечного выброса без повышения АД и тахикардии, то есть без повышения потребности миокарда в кислороде и декомпенсации кровообращения.

Антоцианы (от греч. ανθος – «цветок» и греч. κυανός – «синий», «лазоревый») – окрашенные растительные гликозиды, содержащие в качестве агликона антоцианидины – замещенные 2-фенилхромены, относящиеся к флавоноидам. По степени замещения атомов углерода кольца В гидроксилами различают пеларгонидин, цианидин, пеонидин, дельфинидин, петунидин и мальвидин – соединения, названные по наименованию растений, цветкам которых антоцианы придают окраску: красную, синюю, пурпурную, голубую.

Антоцианы принимают участие в дыхании растений в качестве переносчиков электронов от дыхательного материала (жиров, сахаров и др.) на кислород воздуха. Впервые на эту их роль указал известный русский биохимик В.И. Палладин. Он назвал антоцианы «дыхательными пигментами», которые принимают водород (электрон) от дыхательного материала и передают его на кислород воздуха. При этом сами они попеременно то восстанавливаются, то окисляются. Присоединив водород, дыхательные пигменты превращаются в так называемые «дыхательные хромогены» (Карабанов И.А., 1981). Мы считаем, что антоцианы активируют митохондриальное дыхание в условиях медленного окисления анаэробного гликолиза. Растения, содержащие антоцианы, – ягоды бузины черной и травянистой, шиповник, боярышник, чернику – мы широко назначаем нашим пациентам как средства, устраняющие энергодефицит в клетках эндотелия сосудов.

Хлорофилл относится к азотсодержащим металлоорганическим соединениям – магнийпорфиринам. Существует несколько модификаций хлорофиллов (а, b, с, d), отличающихся системой сопряженных связей в молекуле и заместителями, а следовательно, и спектрами поглощения. Все растения и оксифотобактерии в качестве основного пигмента содержат сине-зеленый хлорофилл а, а в качестве дополнительных – зелено-желтый хлорофилл b (все высшие растения, зеленые водоросли и эвгленовые водоросли). Спектр поглощения хлорофилла а и b имеет два ярко выраженных максимума: в красной области – соответственно 640 и 660 нм и в сине-фиолетовой – 430 и 450 нм. Минимум поглощения лежит в зоне зеленых лучей. Этим и объясняется зеленая окраска пигментов.

Значительное количество хлорофилла содержится в листьях крапивы, сныти, клевера и др. Следует особо отметить стимулирующие, антидеструктивные, регенерирующие свойства хлорофилла.

Каротиноиды – оранжевые пигменты, весьма распространенные в растениях: альфа-, бета-каротин, ликопин, лютеин, виолаксантин.

Основной структурной особенностью каротиноидов является наличие длинной полиеновой сопряженной системы пи-связей и связанная с этим высокая степень и электронодонорности и электроноакцепторности.

Отсюда вытекают такие свойства каротиноидов, как легкость окисления и восстановления, их способность поглощать фотоны малой и средней энергии (то есть видимый и ультрафиолетовый свет) и, соответственно, быть окрашенными соединениями (Племенков, 2001). Каротиноиды обладают антиоксидантными, антидеструктивными свойствами, светозащитными свойствами, связанными со способностью поглощать световую энергию как в самом растении, так и в поврежденных тканях.

Алкалоиды – азотсодержащие циклические соединения, оказывающие мощное физиологическое воздействие на организм, по замечанию белорусского фармакогноста д. ф. м. Г.Н. Бузука, в ультрафиолетовом свете мерцают голубым, бледно-сиреневым, желтым и оранжевым цветами. Основоположникам химии алкалоидов является академик А.П. Орехов, первый возглавивший отдел химии алкалоидов в 1928 году в Москве во Всесоюзном научно-исследовательском химико-фармацевтическом институте имени С. Орджоникидзе (ВНИХФИ). Именно в эти годы было начато изучение растений Средней Азии, Сибири и Кавказа с организацией ежегодных экспедиций. Лекарственные растения привозили в отдел химии. Ботаник П.С. Массагетов заготавливал алкалоидные растения Средней Азии, из Сибири растения доставлял фармаколог М.Н. Варлаков, а на Кавказе растения собирал ботаник Л.А. Уткин. Это были талантливые самоотверженные ученые, чьи имена дороги нашему сердцу. Нельзя не вспомнить замечательную проникновенную книгу Питирима Массагетова «Заветные травы», многочисленные исследовательские работы Михаила Николаевича Варлакова (1906–1949), знатока тибетской медицины, который собрал и систематизировал многочисленные письменные источники тибетской школы врачевания. В короткий срок им опубликовано множество научных работ. Л.А. Уткин также является соавтором обширнейшего библиографического словаря лекарственных растений, описания лекарственных растений в народной медицине Сибири.