Страница 24 из 27
Perello, M. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent ma
Perrin M.H. Cloning and functional expression of a rat brain corticotrophin releasing factor (CRF) receptor. /Perrin M.H., Donaldson C.J., Chen R. et al. // Endocrinology. 1993. V. 133. P.3058–3061.
Pettit H.O. Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. /Pettit H.O., Ettenberg A., Bloom F.E., Koob G.F. // Psychopharmacology 1984;84:167–173.
Peyron, C. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. /C. Peyron, J. Faraco, W. Rogers et al. // Natural Medicine. – 2000 – Vol.6. – P.991–997.
Peyron, C. Neurons containing hypocretin (orexin) project to multiple neuronal systems. /C. Peyron, D. K. Tighe, A. N. Van den Pol et al. // J. Neurosci. – 1998 – Vol.18. – P.9996–10015.
Piazza P.V. The role of stress in drug self-administration. /Piazza P.V., Le Moal M. // Trends Pharmacol. Sci. 1998. V. 19. P.67–74.
Potter E. Distribution of corticotropin-releasing factor receptor mRNA expression in the rat brain and pituitary. /Potter E., Sutton S., Donaldson C. et al. // Proc. Natl. Acad. Sci. USA. 1994. V. 91. P.8777–8781.
Price D.D. Central neural mechanisms that interrelate sensory and affective dimensions of pain. Mol Interv 2002; 2:392–403. [PubMed: 14993415]
Quarta, D. Systemic administration of ghrelin increases extracellular dopamine in the shell but not the core subdivision of the nucleus accumbens. /Quarta, D., Di Francesco, C., Melotto, S., Mangiarini, L., Heidbreder, C., Hedou, G. // NeurochemistryInternational 54 (2) – 2009 – Р.89–94.
Rassnick S. Microinjection of a corticotropin-releasing factor antagonist into the central nucleus of the amygdala reverses anxiogenic-like effects of ethanol withdrawal. /Rassnick S, Heinrichs SC, Britton KT, Koob GF. // Brain Res 1993a; 605:25–32. [PubMed: 8467387]
Reyes T.M. Categorically distinct acute stressors elicit dissimilar transcriptional profiles in the paraventricular nucleus of the hypothalamus. /Reyes T.M., Walker J.R., DeCino C., Hogenesch J.B., Sawchenko P.E. // J Neurosci. 2003; 23:5607–16. []
Robinson, T.E. The neural basis of drug craving – an incentivesensitization theory of addiction. /Robinson, T.E., Berridge, K.C. // Brain Research Reviews 18 (3) – 1993 – Р.247–291.
Rosin, D. L. Hypothalamic orexin (hypocretin) neurons express vesicular glutamate transporters VGLUT1 or VGLUT2. /D. L. Rosin, M C. Weston, C. P. Sevigny et al. // J. Comp. Neurol. − 2003 − Vol.465, − P.593–603.
Sakurai, T. Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. /T. Sakurai, A. R. Nagata, A. Yamanaka et al. // Neuron. − 2005 − Vol.46, − P.297–308.
Sakurai, T. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. /T. Sakurai, A. Amemiya, M. Ishii et al. // Cell. −1998 − Vol.92, − P.573–585.
Sarnyai Z. The role of corticotropinreleasing factor in drug addiction. /Sarnyai Z., Shaham Y., Heinrichs S.C. // Pharmacol. Rev. 2001. V. 53. P.209–243.
Schulz W. Multiple reward signals in the brain. /Schulz W. // Nat. Rev. Neurosci. 2000. V.1. P.199–207.
Schuster C.R. Self administration and behavioral dependence on drugs. /Schuster C.R., Thompson T. // A
Seyler L.E. The effects of smoking on ACTH and cortisol secretion. /Seyler L.E., Fertig J., Pomerleau O. et al. / Life Sci. 1984. V. 34. P.57–65.
Shabanov P.D. Extrahypothalamic corticoliberin receptors regulate the reinforcing effects of self-stimulation. /Shabanov P.D., Lebedev A.A., Nozdrachev A.D. // Dokl. Biol. Sci. 406 : 14–17. 2006.
Shabanov P.D. The extended amygdala CRF receptors regulate the reinforcing effect of self-stimulation. /Shabanov P.D. // Int. J. Addiction Res. 1 (1): 200–204. 2008.
Shizgal P. Forebrain neurons driven by rewarding stimulation of the medial forebrain bundle in the rat: comparison of psychophysical and electrophysiological estimates of refractory periods. /Shizgal P., Schindler D., Rompre P.P. // Brain Res. 1989. V.499. P.234–248.
Shizgal P. Neural basis of utility estimation. /Shizgal P. // Curr. Opin. Neurobiol. 1997. V.7. P.198–208.
Shizgal P. On the neural computation of utility. /Shizgal P., Conover K. // Curr. Dir. Psychol. Sci. 1996. V.5. P.37–43.
Shizgal P. Toward a cellular analysis of intracranial self-stimulation: contributions of collision studies. /Shizgal P. // Neurosci. Biobehav. Rev. 1989. V.13. P.81–90.
Skibicka, K.P. Ghrelin and food reward, what’s underneath: the story of potential underlying substrates. /Skibicka, K.P., Dickson, S.L. // Peptides; Special Issue on Ghrelin, in press.
Skibicka, K.P. Ghrelin directly targets the mesolimbic pathway to increase food motivation. /Skibicka, K.P., Hansson, C., Alvarez-Crespo, M., Friberg, A., Dickson, S.L. // Neuroscience, in press-b, (Epub ahead of print) doi:10.1016/j.neuroscience.2011.02.016.
Skibicka, K.P. Role of ghrelin in food reward: impact of ghrelin on sucrose self-administration and mesolimbic dopamine and acetylcholine receptor gene expression. /Skibicka, K.P., Hansson, C., Egecioglu, E., Dickson, S.L. // Addiction Biology, in press-a (Epub ahead of print). doi:10.1111/j.1369-1600.2010.00294.x.
Smith S.M. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. / Smith S.M., Vale W.W. // Dialogues ClinNeurosci. 2006;8:383–395. [PMC free article] [PubMed]
Smith, R. J. Orexin/hypocretin 1 receptor antagonist reduces heroin self-administration and cue-induced heroin seeking. /R. J. Smith, G. Aston-Jones // Eur. J. Neuroscience. − 2012 − Vol.35, − P.798–804.
Smith, R. J. Orexin/hypocretin signaling at the orexin 1 receptor regulates cue-elicited cocaine- seeking. /R. J. Smith, G. Aston-Jones, E. R. See // Eur. J. Neuroscience. − 2009b − Vol.30, − P.493–503.
Specio S.E. CRF1 receptor antagonists attenuate escalated cocaine self-administration in rats. /Specio SE, Wee S, O’Dell LE, Boutrel B, Zorrilla EP, Koob GF. // Psychopharmacology 2008; 196:473–482.
Stam R. Long-lasting stress sensitization. /Stam R., Bruijnzeel A.W., Wiegant V.M. // Eur. J. Pharmacol. 2000. V. 405. P.217–224.
Steensland, P. Varenicline, an alpha4beta2 nicotinic acetylcholine receptor partial agonist, selectively decreases ethanol consumption and seeking. /Steensland, P., Simms, J.A., Holgate, J., Richards, J.K., Bartlett, S.E. // Proceedings of the National Academy of Sciences of the United States of America 104 (30) – 2007 – Р.12518–12523.
Stevanovic D. The effect of centrally administered ghrelin on pituitary ACTH cells and circulating ACTH and corticosterone in rats. / Stevanovic D., Milosevic V., Starcevic V.P., Severs W.B. // Life Sci. 2007;80:867–872. [PubMed]
Stricker-Krongrad A. Modulation of hypothalamic hypocretin/orexin mRNA expression by glucocorticoids. / Stricker-Krongrad A., Beck B. // BiochemBiophys Res Commun. 2002; 296:129–33. []
Sutton R.E. Corticotropin releasing factor produces behavioural activation in rats. /Sutton R.E., Koob G.F., Le Moal M. et al. // Nature. 1982. V. 297. P.331–333.
Suza
Swanson L.W. Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. /Swanson L.W., Sawchenko P.E., Rivier J., Vale W.W. // Neuroendocrinology. 1983. V. 36. P.165–186.