Добавить в цитаты Настройки чтения

Страница 5 из 6



2. Изнашивание теломер. Постепенное укорачивание теломер – защитных колпачков на концах хромосом, которые часто сравнивают с пластмассовыми наконечниками шнурков. Каждый раз при делении клетки и копировании хромосом теломеры теряют немного материала на концах и укорачиваются. Когда они становятся слишком короткими для стабильности хромосомы, клетка прекращает деление и ее природа и функции меняются.

3. Эпигенетические изменения. В каждой клетке содержится полный комплект генов нашей ДНК, но отдельные гены активируются только тогда и там, где для них есть работа. В остальное время они просто спокойно сидят в ДНК. Работа генов управляется сложными химическими соединениями и белками, которые могут прикрепляться к ДНК и включать-выключать гены, а также регулировать их работу. Все вместе эти соединения и белки образуют эпигеном, который в течение жизни накапливает изъяны. Эти изъяны, в свою очередь, влияют на работу генов.

4. Потеря протеостаза. Клетки содержат огромное количество белков, являющихся продуктами активации генов и исполняющих почти все биологические функции в наших организмах. Протеостаз – процесс, которым клетка упорядочивает эту потенциально неуправляемую массу отдельных белков, каждый из которых в противном случае следовал бы собственным интересам.

5. Разбалансировка распознавания питательных веществ. В ходе эволюции клетки выработали изощренные механизмы для того, чтобы сделать максимальное количество питательных веществ доступными для получения энергии и в качестве материала для роста. Эти механизмы полагаются на датчики, постоянно подающие сигналы о текущем пищевом балансе организма.

6. Митохондриальная дисфункция. Митохондрии – «батарейки» клеток. Эти органеллы присутствуют в больших количествах во всех клетках млекопитающих, кроме зрелых красных кровяных телец. Они заняты в основном поглощением питательных веществ (сахаров и жиров) из клеток и расщеплением их для получения энергии.

7. Клеточное старение. После определенного числа делений клетки теряют эту способность, что измеряется сокращением теломер на концах их хромосом, и погружаются в стадию постоянного покоя, известную как старение (сенесценция). Кроме укорочения теломер, другие факторы, в частности необратимые повреждения ДНК или эпигенетические изменения, тоже способны приводить клетки к биологическому старению.

8. Истощение запаса стволовых клеток. Взрослые стволовые клетки – это недифференцированные клетки, хранящиеся в запасе для починки и поддержания функций тела. Они припрятаны в большинстве тканей и органов и могут быть запрограммированы на замену погибших или поврежденных клеток окружающей ткани. С годами эти резервы снижаются.

9. Изменение коммуникации клеток тела. Это главным образом результат хронического слабовыраженного воспаления тканей.

Перечисленные здесь признаки описывают распространенные универсальные свойства старения, и они снабжают исследователей четкими ориентирами, когда те, закатав рукава, приступают к исследованию. Но что все ученые, следующие по любому из этих путей, разделяют со своими коллегами, так это желание узнать, с чего начинается старение в целом и где искать «главный рубильник», которым природа запускает этот процесс.

Блестящий английский химик Лесли Орджел как-то заметил о поисках истоков жизни, чем сам занимался всю свою жизнь, что это «территория интеллектуального хаоса». Примерно то же можно сказать о старении. Но союз пламенных, а порой и гениальных умов и быстро развивающихся технологий приоткрывает нам кое-какие удивительные тайны процессов, происходящих глубоко внутри наших тел, и начинает приближать нас к пониманию великой загадки старения и смерти.



2

Жизнь на износ?

Идея, что наши тела изнашиваются и сдаются перед силами энтропии, как и всё остальное вокруг – наши машины, дома, мебель, одежда, электроника, равно как и наши собаки, кошки, канарейки, цветы и деревья в садах, – кажется естественной и очевидной большинству из нас, тем, кто не учился специально исследовать такие вещи. Это представление в том или ином виде было господствующим в геронтологии со времен Августа Вейсмана и его теории старения 1880-х годов. Но как именно это происходит?

В 1954 году американский биохимик Дэнхем Харман задался этим вопросом. Его ответом стала теория свободных радикалов (известная также как теория окислительного повреждения, она же – теория оксидативного стресса). По этой теории, свободные радикалы – побочные продукты химических процессов внутри тел, в том числе обмена веществ, который отвечает за превращение пищи в энергию с участием кислорода, – ядовиты и буквально разрушают клетки. У нас есть крепкая защита от свободных радикалов. Большую их часть деактивируют или подбирают мусорщики-макрофаги, а поврежденные клетки умирают и уничтожаются. Но по мере снижения эффективности выработки энергии и нарушений системы вывода отходов свободные радикалы умножаются в числе и наносят все больший вред.

Харман родился в Сан-Франциско в 1916 году, выучился на химика и несколько лет проработал в лаборатории нефтяного концерна Shell. Однако он питал глубокий интерес к науке о жизни и в 33 года вернулся в университет изучать медицину. Особенно ему хотелось знать, почему все умирает. Подсказку дали последствия атомной бомбардировки Хиросимы и Нагасаки в августе 1945 года. Когда сбрасывали бомбы, почти ничего не было известно о действии несмертельных доз радиации на человеческий организм. Так что по окончании Второй мировой войны Америка и Япония подписали соглашение об изучении эффектов облучения на переживших бомбардировку, в которой и через несколько месяцев после которой погибло порядка 130–230 тысяч японских граждан. США особенно интересовались, как защитить военных и штатских от последствий возможных будущих столкновений с применением атомного оружия.

Ученые выяснили, что организм лабораторных мышей после высоких доз радиации захлестнул поток свободных радикалов, прямо-таки затопивший нормальные механизмы защиты; отсюда и токсичные последствия облучения. Любопытным им показалось, что эти ядовитые частицы заодно и мигом состарили мышей. По работе в нефтяной отрасли Харману было известно, как влияют свободные радикалы на неорганические материалы. Занявшись их воздействием на живые существа, он пришел к выводу, что свободные радикалы, появляющиеся вследствие наших собственных нормальных биологических процессов, и вызывают старение. Идея была революционная: до того считалось, что свободные радикалы слишком токсичны, чтобы естественным образом встречаться внутри живых организмов.

Так что же они такое? Свободные радикалы – это атомы, которые потеряли сколько-то электронов в результате химических реакций, поддерживающих жизнь клеток. Из-за этого они стали крайне нестабильными. Атомы-хулиганы носятся по клеткам, пока не восстановят свое электромагнитное равновесие, вырвав электроны еще где-нибудь, что нередко вызывает цепную реакцию. Как выразился российский генетик Михаил Щепинов в интервью журналу New Scientist, свободные радикалы «горят как порох, пока не повредят сотни тысяч [атомов]». Они рушат мембраны и содержимое клеток. А из-за неправильного электрического заряда они как магнитом притягиваются к ДНК, липнут к ленте генетического материала и вызывают случайные мутации.

Это их влияние на ДНК – палка о двух концах. Свободные радикалы мешают работе генов и могут вызывать рак и прочие болезни. Но они также являются важнейшими агентами эволюции, потому что к изменениям окружающей среды мы приспосабливаемся с помощью естественного отбора среди мутаций. Свободные радикалы способствуют сообщению клеток, в определенных обстоятельствах защищают клетки от стресса и даже могут играть роль в борьбе с бактериями и вирусами. И все же в общем и целом вреда от них больше, чем пользы, и наши тела развили надежные механизмы защиты. Клетки-макрофаги иммунной системы сгребают почти все свободные радикалы. Причина старения, по Харману, – накопление ущерба от тех, кто все-таки ускользнул.