Добавить в цитаты Настройки чтения

Страница 11 из 13



Второе начало термодинамики сосредоточено на энтропии. В отличие от первого начала, второе не является законом сохранения. Это закон роста. Второе начало гласит, что во времени существует мощнейшая тенденция к увеличению энтропии. Проще говоря, особенные конфигурации склонны эволюционировать в сторону обычных (ваша тщательно отглаженная рубашка становится мятой), то есть порядок склонен скатываться к беспорядку (ваш идеально организованный гараж превращается в беспорядочную мешанину инструментов, ящиков и спортивного инвентаря). Хотя подобные сравнения формируют прекрасный интуитивный образ, статистическая формулировка понятия энтропии, данная Больцманом, позволяет описать второе начало со всей точностью и, что не менее важно, получить ясное представление о том, почему оно верно.

Все сводится к игре чисел. Представьте еще раз монеты. Если вы аккуратно разложите их на столе орлами кверху – в низкоэнтропийной конфигурации, – а затем немного потрясете и перемешаете их, то получите, скорее всего, хотя бы несколько решек – более высокоэнтропийную конфигурацию. Если потрясти монеты еще раз, то можно представить, что вам удастся вернуть все монеты в положение орлом кверху, но для этого стол нужно будет трясти вполне определенным образом, настолько точно, что перевернутся только те несколько монет, которые легли решкой. Это чрезвычайно маловероятно. Намного более вероятно, что тряска вместо этого перевернет некий случайный набор монет. Некоторые из тех нескольких монет, что были решками, возможно, перевернутся обратно, но из тех монет, что были орлами, гораздо большее количество станет решками. Так что простая прямолинейная логика – никакой хитроумной математики, никаких неуместно абстрактных идей – сообщает нам, что если начать с варианта «все орлы», то произвольное встряхивание приведет к увеличению числа решек. То есть к росту энтропии.

Движение к увеличению числа решек будет продолжаться до тех пор, пока мы не достигнем соотношения орлов и решек примерно 50 на 50. В этот момент встряхивание станет переворачивать монеты из орлов в решки примерно столько же, сколько из решек в орлы, и дальше конфигурация начнет бóльшую часть времени мигрировать между самыми густонаселенными, самыми высокоэнтропийными группами.

То, что верно для монет, справедливо и в более общем плане. Если вы печете хлеб, можете быть уверены, что аромат очень скоро наполнит даже самые удаленные от кухни комнаты. Сначала молекулы, высвободившиеся по мере запекания хлеба, концентрируются возле духовки. Но постепенно они рассеиваются. Причина этого, аналогичная нашему объяснению на случай монет, состоит в том, что у ароматических молекул гораздо больше способов распределиться по всему объему, чем держаться всем вместе. Поэтому намного вероятнее, что из-за случайного столкновений и ударов молекулы будут разлетаться, а не кучковаться. Так что низкоэнтропийная конфигурация молекул, сосредоточенных вокруг печки, будет естественным образом развиваться в сторону высокоэнтропийного состояния, в котором они распределятся по всему вашему дому[29].

Говоря в самом общем плане, если некоторая физическая система не находится еще в состоянии с максимальной доступной энтропией, вероятность того, что она будет развиваться в направлении этого состояния, чрезвычайно велика. Объяснение, которое хорошо иллюстрируется хлебным ароматом, опирается на самые простые рассуждения: поскольку число конфигураций с большей энтропией многократно превышает их число с меньшей энтропией (по определению энтропии), вероятность того, что случайная толкотня – бесконечные соударения и колебания атомов и молекул – поведет систему по направлению к более высокой, а не к более низкой энтропии, чрезвычайно высока. Процесс этот будет продолжаться до тех пор, пока мы не достигнем конфигурации с самой высокой доступной энтропией. Начиная с этого момента беспорядочное движение молекул заставит, скорее всего, составляющие системы мигрировать между (как правило) громадным числом конфигураций, соответствующих состояниям с максимальной энтропией[30].

Вот оно, второе начало термодинамики. И вот почему оно верно.

Энергия и энтропия

Прочитав описание, вы могли бы подумать, что первое и второе начала термодинамики совершенно различны. В конце концов, одно из них сфокусировано на энергии и ее сохранении, а другое – на энтропии и ее росте. Но существующая между ними глубокая связь подчеркивается фактом, который неявно содержится во втором начале и к которому мы будем еще неоднократно обращаться: не вся энергия одинакова.

Рассмотрим, к примеру, динамитный патрон. Поскольку вся энергия, заключенная в динамите, содержится в плотной, компактной, упорядоченной химически упаковке, эту энергию несложно обуздать. Поместите динамит туда, где вы хотите эту энергию выгрузить, и подожгите запал. Вот и все. После взрыва вся энергия динамита по-прежнему существует. Это первое начало в действии. Но поскольку энергия динамита превратилась в стремительное и беспорядочное движение широко разлетевшихся частиц, обуздать эту энергию теперь чрезвычайно трудно. Поэтому, хотя суммарное количество энергии не изменилось, характер ее стал совсем другим.

Мы скажем, что до взрыва энергия динамита была высокого качества: она была сконцентрирована в малом объеме и легко доступна. И наоборот. После взрыва энергия стала низкокачественной: теперь она распределена по большому объему и использовать ее трудно. А поскольку взрывающийся динамит полностью подчиняется второму началу и движется от порядка к беспорядку – от низкой энтропии к высокой, – мы связываем низкую энтропию с высококачественной энергией, а высокую энтропию – с низкокачественной энергией. Да, я понимаю. За всеми этими низко- и высоко- трудно уследить. Однако вывод получается весьма ценным: если первое начало термодинамики гласит, что количество энергии сохраняется во времени, то второе утверждает, что качество этой энергии со временем ухудшается.

Итак, почему же будущее отличается от прошлого? Ответ, очевидно вытекающий из сказанного, состоит в том, что энергия, работающая в будущем, более низкого качества, чем та, что работает в прошлом. Будущее обладает большей энтропией, чем прошлое.



По крайней мере, так предположил Больцман.

Больцман и Большой взрыв

Больцман, безусловно, на что-то наткнулся. Но есть одно тонкое уточнение ко второму началу, следствия из которого, сказать по правде, в полной мере не сразу дошли даже до Больцмана.

Второе начало термодинамики – не закон в традиционном смысле этого слова. Второе начало не запрещает полностью уменьшение энтропии. Оно лишь объявляет, что такое уменьшение маловероятно. Для монет мы оценили эту вероятность численно. В сравнении с единственной конфигурацией со всем орлами ситуация, при которой при случайном броске 100 монет выпадет 50 орлов и 50 решек, в сто миллиардов миллиардов миллиардов раз более вероятна. Встряхните эту высокоэнтропийную конфигурацию еще раз, и вы можете, в принципе, получить низкоэнтропийную конфигурацию «все орлы», это не запрещено, но из-за сильно сдвинутых шансов на практике такого не происходит.

Для обычной физической системы, в которой составляющих намного больше сотни, шансы против уменьшения энтропии становятся еще более подавляющими. Хлеб в процессе выпечки выпускает миллиарды и миллиарды молекул. Конфигураций, в которых эти молекулы распределятся по всему вашему дому, многократно больше, чем тех, в которых они коллективно устремятся к духовке. При беспорядочном метании и толкании молекулы могли бы, в принципе, собраться обратно в хлеб, обратить вспять процесс выпечки и оставить вам кучку холодной сырой муки. Но вероятность этого ближе к нулю, чем вероятность того, что, побрызгав на холст красками, вы получите «Мону Лизу». Несмотря на это, следует иметь в виду, что, если бы такой процесс обращения энтропии все же состоялся, он не противоречил бы законам физики. Снижение энтропии чертовски маловероятно, но законы физики тем не менее его допускают.

29

Примерно так же, как в примере с паром в вашей ванной, где я оставил без внимания молекулы воздуха, для простоты я не буду явно рассматривать столкновения между горячими молекулами, вылетевшими из пекущегося хлеба, и более холодными молекулами воздуха, летающими по вашей кухне и по всему дому. Такие столкновения должны в среднем увеличивать скорость молекул воздуха и уменьшать скорость тех, что вылетели из хлеба, приводя в конечном итоге оба типа молекул к одинаковой температуре. Понижение температуры молекул хлеба должно снижать их энтропию, но повышение температуры молекул воздуха более чем компенсирует повышение энтропии, так что суммарная энтропия обеих групп на самом деле повысится. В упрощенном варианте, который я описал, можно считать среднюю скорость молекул, высвобожденных хлебом, постоянной в процессе их распространения; тогда их температура будет оставаться постоянной, так что повышение их энтропии будет происходить вследствие того, что они заполняют больший объем.

30

Для подкованного в математике читателя скажу, что в основе данного обсуждения (так же как и в большинстве изложений статистической механики в учебниках и исследовательской литературе) лежит ключевое формальное предположение. Для любого заданного макросостояния существуют сопоставимые микросостояния, которые будут развиваться в направлении более низкоэнтропийных конфигураций. К примеру, рассмотрим обращение во времени любого развития событий, результатом которого стало заданное микросостояние, берущее начало в более ранней низкоэнтропийной конфигурации. Такое «перевернутое во времени» микросостояние должно развиваться по направлению к более низкой энтропии. В общем случае мы классифицируем такие микросостояния как «редкие» или «специализированные». Математически такая классификация требует определения меры на пространстве конфигураций. В знакомых ситуациях использование равномерной меры на таком пространстве действительно делает начальные условия со снижением энтропии «редкими» – то есть с малой мерой. Однако, если мера выбрана так, чтобы достигать пиковых значений в окрестностях таких начальных конфигураций со снижением энтропии, они по построению не будут редкими. Насколько нам известно, выбор меры производится эмпирически; для систем того рода, что мы встречаем в повседневной жизни, равномерная мера выдает предсказания, которые хорошо согласуются с наблюдениями; то же можно сказать о введенной нами мере. Но важно отметить, что выбор меры оправдывается экспериментом и наблюдением. Когда мы рассматриваем экзотические ситуации (такие как ранняя Вселенная), для которых у нас нет данных, позволяющих выбрать конкретную меру, приходится признать, что интуиция о «редких» или «оригинальных» состояниях не имеет такой же эмпирической базы.